Genetic algorithm based optimization for allocation of static VAr compensators

Author(s):  
A.A. Alabduljabbar
2011 ◽  
Vol 14 (1) ◽  
Author(s):  
Enrique Ramón Chaparro Viveros ◽  
Manuel Leonardo Sosa Ríos

The optimal coordinated tuning of a group of Static Var Compensators (SVC), in steady state, allows the Power Electric Systems (PES) to operate close to their overload limits, maintaining the voltage stability in several operating conditions. The mentioned tuning problem was considered as a Multi- objective Optimization Problem (MOP) with three objectives to optimize: the financial investment for acquiring the set of compensators, the maximum voltage deviation and total active power loss. The Genetic Algorithm (GA), which belongs to the group of Evolutionary Algorithms, was utilized and adapted for MOP, obtaining a Multi-Objective GA (MOGA). The parameters to be adjusted in each compensator are: the reference voltage and the minimum and maximum reactive power injected to the system. In this work, the number of compensators and their locations were calculated using the Q-V sensitivity curve, from the Load Flow algorithm, based on Newton–Raphson method. The proposed coordinated tuning method will be validated considering an example of PES, where was located and tuned a specific set of compensators. Time simulations were made for dynamic performing the steady state coordinated tuning.


1994 ◽  
Vol 4 (9) ◽  
pp. 1281-1285 ◽  
Author(s):  
P. Sutton ◽  
D. L. Hunter ◽  
N. Jan

Author(s):  
J. Magelin Mary ◽  
Chitra K. ◽  
Y. Arockia Suganthi

Image processing technique in general, involves the application of signal processing on the input image for isolating the individual color plane of an image. It plays an important role in the image analysis and computer version. This paper compares the efficiency of two approaches in the area of finding breast cancer in medical image processing. The fundamental target is to apply an image mining in the area of medical image handling utilizing grouping guideline created by genetic algorithm. The parameter using extracted border, the border pixels are considered as population strings to genetic algorithm and Ant Colony Optimization, to find out the optimum value from the border pixels. We likewise look at cost of ACO and GA also, endeavors to discover which one gives the better solution to identify an affected area in medical image based on computational time.


Sign in / Sign up

Export Citation Format

Share Document