scholarly journals Formalizing a framework for dynamic hybrid strategy models in distributed interactive applications

Author(s):  
A. McCoy ◽  
S. McLoone ◽  
D. Delaney ◽  
T. Ward
2012 ◽  
Author(s):  
Vitor Balbio da Silva ◽  
Alexandre da Costa Sena ◽  
Anselmo Antunes Montenegro

2012 ◽  
Author(s):  
Bruno Moreira ◽  
Mauricio Kischinhevsky ◽  
Marcelo Zamith ◽  
Esteban Clua ◽  
Diego Brandao

Author(s):  
Xiao Wang ◽  
Shanti Bhushan ◽  
Bukhari Manshoor ◽  
Edward A. Luke ◽  
Adrian Sescu ◽  
...  

ASCEND 2020 ◽  
2020 ◽  
Author(s):  
Justin C. Brannan ◽  
Craig R. Carignan ◽  
Brian J. Roberts

2019 ◽  
Author(s):  
Hossein Jahandideh ◽  
Kevin F. McCardle ◽  
Julie Drew ◽  
Filippo Balestrieri

2020 ◽  
Author(s):  
Fang Li ◽  
Muhammad "Tuan" Amith ◽  
Grace Xiong ◽  
Jingcheng Du ◽  
Yang Xiang ◽  
...  

BACKGROUND Alzheimer’s Disease (AD) is a devastating neurodegenerative disease, of which the pathophysiology is insufficiently understood, and the curative drugs are long-awaited to be developed. Computational drug repurposing introduces a promising complementary strategy of drug discovery, which benefits from an accelerated development process and decreased failure rate. However, generating new hypotheses in AD drug repurposing requires multi-dimensional and multi-disciplinary data integration and connection, posing a great challenge in the era of big data. By integrating data with computable semantics, ontologies could infer unknown relationships through automated reasoning and fulfill an essential role in supporting computational drug repurposing. OBJECTIVE The study aimed to systematically design a robust Drug Repurposing-Oriented Alzheimer’s Disease Ontology (DROADO), which could model fundamental elements and their relationships involved in AD drug repurposing and integrate their up-to-date research advance comprehensively. METHODS We devised a core knowledge model of computational AD drug repurposing, based on both pre-genomic and post-genomic research paradigms. The model centered on the possible AD pathophysiology and abstracted the essential elements and their relationships. We adopted a hybrid strategy to populate the ontology (classes and properties), including importing from well-curated databases, extracting from high-quality papers and reusing the existing ontologies. We also leveraged n-ary relations and nanopublication graphs to enrich the object relations, making the knowledge stored in the ontology more powerful in supporting computational processing. The initially built ontology was evaluated by a semiotic-driven and web-based tool Ontokeeper. RESULTS The current version of DROADO was composed of 1,021 classes, 23 object properties and 3,207 axioms, depicting a fundamental network related to computational neuroscience concepts and relationships. Assessment using semiotic evaluation metrics by OntoKeeper indicated sufficient preliminary quality (semantics, usefulness and community-consensus) of the ontology. CONCLUSIONS As an in-depth knowledge base, DROADO would be promising in enabling computational algorithms to realize supervised mining from multi-source data, and ultimately, facilitating the discovery of novel AD drug targets and the realization of AD drug repurposing.


2021 ◽  
Vol 11 (3) ◽  
pp. 1211
Author(s):  
En-Chih Chang ◽  
Chun-An Cheng ◽  
Rong-Ching Wu

This paper develops a full-bridge DC-AC converter, which uses a robust optimal tracking control strategy to procure a high-quality sine output waveshape even in the presence of unpredictable intermissions. The proposed strategy brings out the advantages of non-singular fast convergent terminal attractor (NFCTA) and chaos particle swarm optimization (CPSO). Compared with a typical TA, the NFCTA affords fast convergence within a limited time to the steady-state situation, and keeps away from the possibility of singularity through its sliding surface design. It is worth noting that once the NFCTA-controlled DC-AC converter encounters drastic changes in internal parameters or the influence of external non-linear loads, the trembling with low-control precision will occur and the aggravation of transient and steady-state performance yields. Although the traditional PSO algorithm has the characteristics of simple implementation and fast convergence, the search process lacks diversity and converges prematurely. So, it is impossible to deviate from the local extreme value, resulting in poor solution quality or search stagnation. Thereby, an improved version of traditional PSO called CPSO is used to discover global optimal NFCTA parameters, which can preclude precocious convergence to local solutions, mitigating the tremor as well as enhancing DC-AC converter performance. By using the proposed stable closed-loop full-bridge DC-AC converter with a hybrid strategy integrating NFCTA and CPSO, low total harmonic distortion (THD) output-voltage and fast dynamic load response are generated under nonlinear rectifier-type load situations and during sudden load changes, respectively. Simulation results are done by the Matlab/Simulink environment, and experimental results of a digital signal processor (DSP) controlled full-bridge DC-AC converter prototype confirm the usefulness of the proposed strategy.


Sign in / Sign up

Export Citation Format

Share Document