Differential acquisition of m-sequence using sum-product iterative decoding method

Author(s):  
Zhi-song Bie ◽  
Kai Niu ◽  
Li Zhang ◽  
Wei-ling Wu
1990 ◽  
Vol 26 (19) ◽  
pp. 1625 ◽  
Author(s):  
M. Bußmann ◽  
U. Langmann
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Hocine Fekih ◽  
Boubakar Seddik Bouazza ◽  
Keltoum Nouri

AbstractRecently, using iterative decoding algorithms to achieve an interesting bit error rate for spectrally efficient modulation become a necessity for optical transmission, in this paper, we propose a coded modulation scheme based on bit interleaving circular recursive systematic convolutional (CRSC) code and 16-QAM modulation. The proposal system considered as a serial concatenation of a channel encoder, a bit interleaver and M-ary modulator can be flexible easy to implement using a short code length. For a spectral efficiency $\eta =3\text{bit}/s/Hz$, the coding gain at a bit error rate of 10−6 is about 8 dB.


2020 ◽  
Vol 20 (4) ◽  
pp. 809-819 ◽  
Author(s):  
Emma E. Biggs ◽  
Ann Meulders ◽  
Amanda L. Kaas ◽  
Rainer Goebel ◽  
Johan W. S. Vlaeyen

AbstractObjectivesContemporary fear-avoidance models of chronic pain posit that fear of pain, and overgeneralization of fear to non-threatening stimuli is a potential pathway to chronic pain. While increasing experimental evidence supports this hypothesis, a comprehensive investigation requires testing in multiple modalities due to the diversity of symptomatology among individuals with chronic pain. In the present study we used an established tactile fear conditioning paradigm as an experimental model of allodynia and spontaneous pain fluctuations, to investigate whether stimulus generalization occurs resulting in fear of touch spreading to new locations.MethodsIn our paradigm, innocuous touch is presented either paired (predictable context) or unpaired (unpredictable context) with a painful electrocutaneous stimulus (pain-US). In the predictable context, vibrotactile stimulation to the index or little finger was paired with the pain-US (CS+), whilst stimulation of the other finger was never paired with pain (CS−). In the unpredictable context, vibrotactile stimulation to the index and little fingers of the opposite hand (CS1 and CS2) was unpaired with pain, but pain-USs occurred unpredictable during the intertrial interval. During the subsequent generalization phase, we tested the spreading of conditioned responses (self-reported fear of touch and pain expectancy) to the (middle and ring) fingers between the CS+ and CS−, and between the CS1 and CS2.ResultsDifferential fear acquisition was evident in the predictable context from increased self-reported pain expectancy and self-reported fear for the CS + compared to the CS−. However, expectancy and fear ratings to the novel generalization stimuli (GS+ and GS−) were comparable to the responses elicited by the CS−. Participants reported equal levels of pain expectancy and fear to the CS1 and CS2 in the unpredictable context. However, the acquired fear did not spread in this context either: participants reported less pain expectancy and fear to the GS1 and GS2 than to the CS1 and CS2. As in our previous study, we did not observe differential acquisition in the startle responses.ConclusionsWhilst our findings for the acquisition of fear of touch replicate the results from our previous study (Biggs et al., 2017), there was no evidence of fear generalization. We discuss the limitations of the present study, with a primary focus on procedural issues that were further investigated with post-hoc analyses, concluding that the present results do not show support for the hypothesis that stimulus generalization underlies spreading of fear of touch to new locations, and discuss how this may be the consequence of a context change that prevented transfer of acquisition.


1998 ◽  
Vol 118 (3) ◽  
pp. 411-418
Author(s):  
Hiroki Yoshimura ◽  
Tadaaki Shimizu ◽  
Takashi Sayama ◽  
Naoki Isu ◽  
Kazuhiro Sugata

2015 ◽  
Vol 1 (1) ◽  
pp. 302-305 ◽  
Author(s):  
S. Ley ◽  
M. Helbig ◽  
J. Sachs

AbstractThis paper investigates the potential of magnetic modulated iron oxide nanoparticles in terms of a contrast enhancement for Ultra-wideband (UWB) breast imaging. The work is motivated by the low dielectric contrast between tumor and normal glandular/fibroconnective tissue. The influence of an external polarizing magnetic field on pure and coated magnetite nanoparticles is investigated in this contribution. Measurements were conducted using M-sequence UWB technology and an oil-gelatin phantom. It is shown that a coating, which is necessary for clinical use, results in a lower signal response, and thus leads to a lower detectability of magnetic modulated nanoparticles.


2007 ◽  
Vol 1301 ◽  
pp. 83-86
Author(s):  
H. Takeichi ◽  
S. Koyama ◽  
A. Matani ◽  
A. Cichocki

Sign in / Sign up

Export Citation Format

Share Document