Options for mitigation of the effects of wind farms on radar systems

Author(s):  
C.A. Jackson ◽  
M.M. Butler
Keyword(s):  
2009 ◽  
Vol 26 (5) ◽  
pp. 894-910 ◽  
Author(s):  
B. M. Isom ◽  
R. D. Palmer ◽  
G. S. Secrest ◽  
R. D. Rhoton ◽  
D. Saxion ◽  
...  

Abstract The wind power industry has seen tremendous growth over the past decade and with it has come the need for clutter mitigation techniques for nearby radar systems. Wind turbines can impart upon these radars a unique type of interference that is not removed with conventional clutter-filtering methods. Time series data from Weather Surveillance Radar-1988 Doppler (WSR-88D) stations near wind farms were collected and spectral analysis was used to investigate the detailed characteristics of wind turbine clutter. Techniques to mask wind turbine clutter were developed that utilize multiquadric interpolation in two and three dimensions and can be applied to both the spectral moments and spectral components. In an effort to improve performance, a nowcasting algorithm was incorporated into the interpolation scheme via a least mean squares criterion. The masking techniques described in this paper will be shown to reduce the impact of wind turbine clutter on weather radar systems at the expense of spatial resolution.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wen-Qin Wang

It is well recognized that a wind turbine has a large radar cross-section (RCS) and, due to the movement of the blades, the wind turbine will generate a Doppler frequency shift. This scattering behavior may cause severe interferences on existing radar systems including static ground-based radars and spaceborne or airborne radars. To resolve this problem, efficient techniques or algorithms should be developed to mitigate the effects of wind farms on radars. Herein, one transponder-based mitigation technique is presented. The transponder is not a new concept, which has been proposed for calibrating high-resolution imaging radars. It modulates the radar signal in a manner that the retransmitted signals can be separated from the scene echoes. As wind farms often occupy only a small area, mitigation processing in the whole radar operation will be redundant and cost inefficient. Hence, this paper uses a transponder to determine whether the radar is impacted by the wind farms. If so, the effects of wind farms are then mitigated with subsequent Kalman filtering or plot target extraction algorithms. Taking airborne synthetic aperture radar (SAR) and pulse Doppler radar as the examples, this paper provides the corresponding system configuration and processing algorithms. The effectiveness of the mitigation technique is validated by numerical simulation results.


2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


2018 ◽  
Vol 596 ◽  
pp. 213-232 ◽  
Author(s):  
MJ Brandt ◽  
AC Dragon ◽  
A Diederichs ◽  
MA Bellmann ◽  
V Wahl ◽  
...  

2017 ◽  
Vol 1 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Nina Lansbury Hall ◽  
Jarra Hicks ◽  
Taryn Lane ◽  
Emily Wood

The wind industry is positioned to contribute significantly to a clean energy future, yet the level of community opposition has at times led to unviable projects. Social acceptance is crucial and can be improved in part through better practice community engagement and benefit-sharing. This case study provides a “snapshot” of current community engagement and benefit-sharing practices for Australian wind farms, with a particular emphasis on practices found to be enhancing positive social outcomes in communities. Five methods were used to gather views on effective engagement and benefit-sharing: a literature review, interviews and a survey of the wind industry, a Delphi panel, and a review of community engagement plans. The overarching finding was that each community engagement and benefit-sharing initiative should be tailored to a community’s context, needs and expectations as informed by community involvement. This requires moving away from a “one size fits all” approach. This case study is relevant to wind developers, energy regulators, local communities and renewable energy-focused non-government organizations. It is applicable beyond Australia to all contexts where wind farm development has encountered conflicted societal acceptance responses.


Sign in / Sign up

Export Citation Format

Share Document