Analysis of a step-down Cuk converter in continuous and discontinuous operating conditions

Author(s):  
B.V.P. Chong ◽  
L. Zhang ◽  
A. Dehghani
Author(s):  
Tatiane Martins Oliveira ◽  
Enio Roberto Ribeiro ◽  
Aniel Silva Morais ◽  
Fernando Lessa Tofoli
Keyword(s):  

Author(s):  
Neeraj Priyadarshi ◽  
Vigna K. Ramachandaramurthy ◽  
Sanjeevikumar Padmanaban ◽  
Farooque Azam

This research work explains the practical realization of hybrid solar wind based standalone power system with maximum power point tracker (MPPT) to produce electrical power in rural places (residential applications). The solar inspired Ant Colony Optimization (ACO) based MPPT algorithm is employed for the purpose of fast and accurate tracking power from solar and wind system. Fuzzy Logic Control (FLC) inverter controlling strategy is adopted in this presented work compared to classical PI control. Moreover, single Cuk converter is operated as impedance power adapter to execute MPPT functioning. Satisfactory practical results have been realized using dSPACE (DS1104) platform that justify the superiority of proposed algorithms designed under various operating situations.


2014 ◽  
Vol 571-572 ◽  
pp. 1053-1058
Author(s):  
Jing Wei Hu ◽  
Jiu He Wang ◽  
Qi Tang

A new Cuk converter with high step-down ratio was proposed. The operating principle and operating mode of the new Cuk converter were analyzed in detail and the EL model of the new Cuk converter was established. Based on passivity-based control theory, a passivity-based controller of the new Cuk converter was designed by the method called damping injection. The controller can enable the new Cuk converter achieve good dynamic and static performance and robustness to the load. Compared with Buck converters, the new Cuk converter has a higher step-down capability and a smaller ripple of the input current. Simulation results show that the new Cuk converter is feasible.


Author(s):  
E.D. Boyes ◽  
P.L. Gai ◽  
D.B. Darby ◽  
C. Warwick

The extended crystallographic defects introduced into some oxide catalysts under operating conditions may be a consequence and accommodation of the changes produced by the catalytic activity, rather than always being the origin of the reactivity. Operation without such defects has been established for the commercially important tellurium molybdate system. in addition it is clear that the point defect density and the electronic structure can both have a significant influence on the chemical properties and hence on the effectiveness (activity and selectivity) of the material as a catalyst. SEM/probe techniques more commonly applied to semiconductor materials, have been investigated to supplement the information obtained from in-situ environmental cell HVEM, ultra-high resolution structure imaging and more conventional AEM and EPMA chemical microanalysis.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


Author(s):  
M. Pan

It has been known for many years that materials such as zeolites, polymers, and biological specimens have crystalline structures that are vulnerable to electron beam irradiation. This radiation damage severely restrains the use of high resolution electron microscopy (HREM). As a result, structural characterization of these materials using HREM techniques becomes difficult and challenging. The emergence of slow-scan CCD cameras in recent years has made it possible to record high resolution (∽2Å) structural images with low beam intensity before any apparent structural damage occurs. Among the many ideal properties of slow-scan CCD cameras, the low readout noise and digital recording allow for low-dose HREM to be carried out in an efficient and quantitative way. For example, the image quality (or resolution) can be readily evaluated on-line at the microscope and this information can then be used to optimize the operating conditions, thus ensuring that high quality images are recorded. Since slow-scan CCD cameras output (undistorted) digital data within the large dynamic range (103-104), they are ideal for quantitative electron diffraction and microscopy.


Author(s):  
D. Goyal ◽  
A. H. King

TEM images of cracks have been found to give rise to a moiré fringe type of contrast. It is apparent that the moire fringe contrast is observed because of the presence of a fault in a perfect crystal, and is characteristic of the fault geometry and the diffracting conditions in the TEM. Various studies have reported that the moire fringe contrast observed due to the presence of a crack in an otherwise perfect crystal is distinctive of the mode of crack. This paper describes a technique to study the geometry and mode of the cracks by comparing the images they produce in the TEM because of the effect that their displacement fields have on the diffraction of electrons by the crystal (containing a crack) with the corresponding theoretical images. In order to formulate a means of matching experimental images with theoretical ones, displacement fields of dislocations present (if any) in the vicinity of the crack are not considered, only the effect of the displacement field of the crack is considered.The theoretical images are obtained using a computer program based on the two beam approximation of the dynamical theory of diffraction contrast for an imperfect crystal. The procedures for the determination of the various parameters involved in these computations have been well documented. There are three basic modes of crack. Preliminary studies were carried out considering the simplest form of crack geometries, i. e., mode I, II, III and the mixed modes, with orthogonal crack geometries. It was found that the contrast obtained from each mode is very distinct. The effect of variation of operating conditions such as diffracting vector (), the deviation parameter (ω), the electron beam direction () and the displacement vector were studied. It has been found that any small change in the above parameters can result in a drastic change in the contrast. The most important parameter for the matching of the theoretical and the experimental images was found to be the determination of the geometry of the crack under consideration. In order to be able to simulate the crack image shown in Figure 1, the crack geometry was modified from a orthogonal geometry to one with a crack tip inclined to the original crack front. The variation in the crack tip direction resulted in the variation of the displacement vector also. Figure 1 is a cross-sectional micrograph of a silicon wafer with a chromium film on top, showing a crack in the silicon.


Author(s):  
A. Yamanaka ◽  
H. Ohse ◽  
K. Yagi

Recently current effects on clean and metal adsorbate surfaces have attracted much attention not only because of interesting phenomena but also because of practically importance in treatingclean and metal adsorbate surfaces [1-6]. In the former case, metals deposited migrate on the deposit depending on the current direction and a patch of the deposit expands on the clean surface [1]. The migration is closely related to the adsorbate structures and substrate structures including their anisotropy [2,7]. In the latter case, configurations of surface atomic steps depends on the current direction. In the case of Si(001) surface equally spaced array of monatom high steps along the [110] direction produces the 2x1 and 1x2 terraces. However, a relative terrace width of the two domain depends on the current direction; a step-up current widen terraces on which dimers are parallel to the current, while a step-down current widen the other terraces [3]. On (111) surface, a step-down current produces step bunching at temperatures between 1250-1350°C, while a step-up current produces step bunching at temperatures between 1050-1250°C [5].In the present paper, our REM observations on a current induced step bunching, started independently, are described.Our results are summarized as follows.(1) Above around 1000°C a step-up current induces step bunching. The phenomenon reverses around 1200 C; a step-down current induces step bunching. The observations agree with the previous reports [5].


2006 ◽  
Vol 39 (20) ◽  
pp. 54
Author(s):  
SHERRY BOSCHERT
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document