scholarly journals A novel partitioned matrix‐based parameter update method embedded in variational Bayesian for underwater positioning

Author(s):  
Haoqian Huang ◽  
Jiacheng Tang ◽  
Manyi Wang ◽  
Bing Wang ◽  
Xiufeng He
2019 ◽  
Author(s):  
Shinichi Nakajima ◽  
Kazuho Watanabe ◽  
Masashi Sugiyama

Author(s):  
Bagus Septyanto ◽  
Dian Nurdiana ◽  
Sitti Ahmiatri Saptari

In general, surface positioning using a global satellite navigation system (GNSS). Many satellites transmit radio signals to the surface of the earth and it was detected by receiver sensors into a function of position and time. Radio waves really bad when spreading in water. So, the underwater positioning uses acoustic wave. One type of underwater positioning is USBL. USBL is a positioning system based on measuring the distance and angle. Based on distance and angle, the position of the target in cartesian coordinates can be calculated. In practice, the effect of ship movement is one of the factors that determine the accuracy of the USBL system. Ship movements like a pitch, roll, and orientation that are not defined by the receiver could changes the position of the target in X, Y and Z coordinates. USBL calibration is performed to detect an error angle. USBL calibration is done by two methods. In USBL calibration Single Position obtained orientation correction value is 1.13 ̊ and a scale factor is 0.99025. For USBL Quadrant calibration, pitch correction values is -1.05, Roll -0.02 ̊, Orientation 6.82 ̊ and scale factor 0.9934 are obtained. The quadrant calibration results deccrease the level of error position to 0.276 - 0.289m at a depth of 89m and 0.432m - 0.644m at a depth of 76m


2021 ◽  
pp. 1-17
Author(s):  
Yixu Liu ◽  
Xiushan Lu ◽  
Shuqiang Xue ◽  
Shengli Wang

Abstract The layout of seafloor datum points is the key to constructing the seafloor geodetic datum network, and a reliable underwater positioning model is the prerequisite for achieving precise deployment of the datum points. The traditional average sound speed positioning model is generally adopted in underwater positioning due to its simple and efficient algorithm, but it is sensitive to incident angle related errors, which lead to unreliable positioning results. Based on the relationship between incident angle and sound speed, the sound speed function model considering the incident angle has been established. Results show that the accuracy of positioning is easily affected by errors related to the incident angle; the new average sound speed correction model based on the incident angle proposed in this paper is used to significantly improve the underwater positioning accuracy.


Sign in / Sign up

Export Citation Format

Share Document