Comparison of three interval arithmetic‐based algorithms for antenna array pattern upper bound estimation

2019 ◽  
Vol 55 (14) ◽  
pp. 775-776 ◽  
Author(s):  
Guolong He ◽  
Xin Gao ◽  
Hui Zhou ◽  
Hongquan Zhu
2019 ◽  
Vol 4 (1) ◽  
pp. 8-17
Author(s):  
Abdelmadjid RECIOUI

Pattern synthesis of Antenna array has gained much attention over the last years as they constitute an important role in the modern communication systems. Unit circle-based techniques such as Schelkunoff null placement method have proved their effectiveness to synthesize uniformly spaced linear arrays. Nonuniformly spaced antenna array pattern synthesis has been investigated and interesting results have been obtained. In this work, the unit circle representation approach is applied to synthesize nonuniformly spaced and nonuniformly excited linear arrays. The objective is to accurately place nulls in the desired directions while achieving the least possible sidelobe level. The problem is cast as an optimization problem that is solved using the Teaching Learning Based Optimization (TLBO). Examples are dealt with to prove the design approach effectiveness and flexibility for modern communication system applications.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Om Prakash Acharya ◽  
Amalendu Patnaik ◽  
Sachendra N. Sinha

Antenna array pattern nulling is desirable in order to suppress the interfering signals. But in large antenna arrays, there is always a possibility of failure of some elements, which may degrade the radiation pattern with an increase in side lobe level (SLL) and removal of the nulls from desired position. In this paper a correction procedure is introduced based on Particle Swarm Optimization (PSO) which maintains the nulling performance of the failed antenna array. Considering the faulty elements as nonradiating elements, PSO reoptimizes the weights of the remaining radiating elements to reshape the pattern. Simulation results for a Chebyshev array with imposed single, multiple, and broad nulls with failed antenna array are presented.


2020 ◽  
pp. 1-1
Author(s):  
Wei Wei ◽  
Xiaohui Gong ◽  
Weidong Yang ◽  
Yashuang Mu

Sign in / Sign up

Export Citation Format

Share Document