First-order nonlinear systems governed by generalised Riccati partial-differential equation

1969 ◽  
Vol 5 (11) ◽  
pp. 238-239 ◽  
Author(s):  
B.V. Dasarathy
2021 ◽  
pp. 1-20
Author(s):  
STEPHEN TAYLOR ◽  
XUESHAN YANG

Abstract The functional partial differential equation (FPDE) for cell division, $$ \begin{align*} &\frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t))\\ &\quad = -(b(x,t)+\mu(x,t))n(x,t)+b(\alpha x,t)\alpha n(\alpha x,t)+b(\beta x,t)\beta n(\beta x,t), \end{align*} $$ is not amenable to analytical solution techniques, despite being closely related to the first-order partial differential equation (PDE) $$ \begin{align*} \frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)+F(x,t), \end{align*} $$ which, with known $F(x,t)$ , can be solved by the method of characteristics. The difficulty is due to the advanced functional terms $n(\alpha x,t)$ and $n(\beta x,t)$ , where $\beta \ge 2 \ge \alpha \ge 1$ , which arise because cells of size x are created when cells of size $\alpha x$ and $\beta x$ divide. The nonnegative function, $n(x,t)$ , denotes the density of cells at time t with respect to cell size x. The functions $g(x,t)$ , $b(x,t)$ and $\mu (x,t)$ are, respectively, the growth rate, splitting rate and death rate of cells of size x. The total number of cells, $\int _{0}^{\infty }n(x,t)\,dx$ , coincides with the $L^1$ norm of n. The goal of this paper is to find estimates in $L^1$ (and, with some restrictions, $L^p$ for $p>1$ ) for a sequence of approximate solutions to the FPDE that are generated by solving the first-order PDE. Our goal is to provide a framework for the analysis and computation of such FPDEs, and we give examples of such computations at the end of the paper.


2015 ◽  
Vol 47 (1) ◽  
pp. 89-94
Author(s):  
C.L. Yu ◽  
D.P. Gao ◽  
S.M. Chai ◽  
Q. Liu ◽  
H. Shi ◽  
...  

Frenkel's liquid-phase sintering mechanism has essential influence on the sintering of materials, however, by which only the initial 10% during isothermal sintering can be well explained. To overcome this shortage, Nikolic et al. introduced a mathematical model of shrinkage vs. sintering time concerning the activated volume evolution. This article compares the model established by Nikolic et al. with that of the Frenkel's liquid-phase sintering mechanism. The model is verified reliable via training the height and diameter data of cordierite glass by Giess et al. and the first-order partial differential equation. It is verified that the higher the temperature, the more quickly the value of the first-order partial differential equation with time and the relative initial effective activated volume to that in the final equibrium state increases to zero, and the more reliable the model is.


1863 ◽  
Vol 12 ◽  
pp. 420-424

Jacobi in a posthumous memoir, which has only this year appeared, has developed two remarkable methods (agreeing in their general character, but differing in details) of solving non-linear partial differential equations of the first order, and has applied them in connexion with that theory of the differential equations of dynamics which was established by Sir W. R. Hamilton in the 'Philosophical Transactions’ for 1834-35. The knowledge, indeed, that the solution of the equation of a dynamical problem is involved in the discovery of a single central function, defined by a single partial differential equation of the first order, does not appear to have been hitherto (perhaps it will never be) very fruitful in practical results.


Sign in / Sign up

Export Citation Format

Share Document