High-dynamic-range low-noise microwave amplifier

1970 ◽  
Vol 6 (7) ◽  
pp. 202
Author(s):  
J.R. Collard ◽  
A.R. Gobat
1998 ◽  
Vol 179 ◽  
pp. 49-55
Author(s):  
T.A. McKay

The introduction of of Charge Coupled Devices (CCDs) in the middle 1970s provided astronomy with nearly perfect (linear, high-sensitivity, low-noise, high dynamic-range, digital) optical detectors. Unfortunately, restrictions imposed by CCD production and cost has typically limited their use to observations of relatively small fields. Recently a combination of technical advances have made practical the application of CCDs to survey science. CCD mosaic cameras, which help overcome the size restrictions imposed by CCD manufacture, allow electronic access to a larger fraction of the available focal plane. Multi-fiber spectrographs, which couple the low-noise, high QE performance of CCDs with the ability to observe spectra for many objects at once, have improved the spectroscopic efficiency of telescopes by factors approaching half a million. An improved understanding of image distortion gives us telescopes on which we expect sub-arcsecond images a large fraction of the time. Finally, and perhaps most important, the performance of computer hardware continues to advance, to the point where analysis of multi-terabyte datasets, while still daunting, is at least conceivable.


Geophysics ◽  
2002 ◽  
Vol 67 (2) ◽  
pp. 468-477 ◽  
Author(s):  
James B. Lee ◽  
David L. Dart ◽  
Robert J. Turner ◽  
Mark A. Downey ◽  
Arthur Maddever ◽  
...  

Traditionally airborne time-domain electromagnetic (AEM) survey systems use induction coils as the sensor (receiver). We have replaced the induction coil in a transient electromagnetic (TEM) system with a liquid-nitrogen cooled superconducting quantum interference device (SQUID) magnetometer sensor. Using this prototype system, we aimed to improve performance in detecting conductive mineralization, particularly where the conductive mineralization of interest is covered by a conductive regolith. We successfully demonstrated one- and three-component SQUID sensors in airborne TEM surveying, and achieved performance comparable to the induction-coil systems. Implementation of the SQUID system required development of devices capable of operating in magnetically unshielded environments with low noise, high slew rate, and wide bandwidth. Operation of the SQUID sensor in the highly dynamic environment of a towed bird was also necessary, and this implies a high dynamic range and high level of noise associated with the motion in Earth's magnetic field. The high dynamic range of the SQUID response was handled by a combination of resetting the SQUID flux locked loop, reducing the bandwidth, and providing high-gain feedback in parallel with the flux locked loop. A digital stacking filter was used to eliminate low-frequency noise associated with sensor motion. Isolation of the sensor from motion at the TEM signal frequencies required development of a sophisticated suspension system. The SQUID systems were tested over two known conductive targets, and their performance compared with the induction-coil TEM system. A comparative performance measure is developed to take the different sensitivities of the SQUID magnetometer and induction-coil receivers into account. This measure indicates that the SQUID system has superior performance for responses over earth structures with decay time constants greater than ∼6 ms when compared with the induction-coil signals. We also estimate the performance in comparison with integrated outputs of the induction-coil system and show that, at the demonstrated levels of SQUID performance, it is expected to have poorer performance by a factor of two or more. This disadvantage will be reduced for lower frequency, wider channel width TEM configurations or by improvements in the SQUID devices.


2012 ◽  
Vol 8 (8) ◽  
pp. 623-627 ◽  
Author(s):  
Byeong Ho Eom ◽  
Peter K. Day ◽  
Henry G. LeDuc ◽  
Jonas Zmuidzinas

1993 ◽  
Vol 37 ◽  
pp. 145-151
Author(s):  
N. Loxley ◽  
S. Cockerton ◽  
B. K. Tanner

AbstractWe show that a very low noise, high dynamic range scintillation detector has major advantages over conventional detectors for characterization of pseudomorphic HEMT structures by high resolution X-ray diffraction. We show that the reduced background enables a second modulation period to be detected, enabling the thickness and composition to be determined independently. Using a conventional X-ray generator and diffractometer we demonstrate that, in a single scan taking only 10 seconds, we are able to obtain sufficiently good data to provide quality assurance.


2004 ◽  
Vol 14 (6) ◽  
pp. 262-264 ◽  
Author(s):  
Hongtao Xu ◽  
C. Sanabria ◽  
A. Chini ◽  
S. Keller ◽  
U.K. Mishra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document