Transmission system requirements and ancillary services provision

Author(s):  
W. Hung
2021 ◽  
Vol 11 (16) ◽  
pp. 7719
Author(s):  
Panagiotis Pediaditis ◽  
Katja Sirviö ◽  
Charalampos Ziras ◽  
Kimmo Kauhaniemi ◽  
Hannu Laaksonen ◽  
...  

Transmission system operators (TSOs) often set requirements to distribution system operators (DSOs) regarding the exchange of reactive power on the interface between the two parts of the system they operate, typically High Voltage and Medium Voltage. The presence of increasing amounts of Distributed Energy Resources (DERs) at the distribution networks complicates the problem, but provides control opportunities in order to keep the exchange within the prescribed limits. Typical DER control methods, such as constant cosϕ or Q/V functions, cannot adequately address these limits, while power electronics interfaced DERs provide to DSOs reactive power control capabilities for complying more effectively with TSO requirements. This paper proposes an optimisation method to provide power set-points to DERs in order to control the hourly reactive power exchanges with the transmission network. The method is tested via simulations using real data from the distribution substation at the Sundom Smart Grid, in Finland, using the operating guidelines imposed by the Finnish TSO. Results show the advantages of the proposed method compared to traditional methods for reactive power compensation from DERs. The application of more advanced Model Predictive Control techniques is further explored.


Author(s):  
Thomas Krechel ◽  
Francisco Sanchez ◽  
Francisco Gonzalez-Longatt ◽  
Harold Chamorro ◽  
Jose Luis Rueda

Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3481 ◽  
Author(s):  
Abhimanyu Kaushal ◽  
Dirk Van Hertem

Liberalization of electricity markets has brought focus on the optimal use of generation and transmission infrastructure. In such a scenario, where the power transmission systems are being operated closer to their critical limits, Ancillary Services (AS) play an important role in ensuring secure and cost-effective operation of power systems. Emerging converter-based HVDC technologies and integration of renewable energy sources (RES) have changed the power system dynamics which are based on classical power plant operation and synchronous generator dynamics. Transmission system interconnections between different countries and integrated energy markets in Europe have led to a reduction in the use of energy from non-renewable fossil-based sources. This review paper gives an insight into ancillary services definitions and market practices for procurement and activation of these ancillary services in different control areas within the European Network of Transmission System Operators for Electricity (ENTSO-E). The focus lies particularly on ancillary services from HVDC systems. It is foreseen that DC elements will play an important role in the control and management of the future power system and in particular through ancillary services provision. Keeping this in view, the capability of HVDC systems to provide ancillary services is presented.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 917 ◽  
Author(s):  
Konstantinos Oureilidis ◽  
Kyriaki-Nefeli Malamaki ◽  
Konstantinos Gallos ◽  
Achilleas Tsitsimelis ◽  
Christos Dikaiakos ◽  
...  

The high proliferation of converter-dominated Distributed Renewable Energy Sources (DRESs) at the distribution grid level has gradually replaced the conventional synchronous generators (SGs) of the transmission system, resulting in emerging stability and security challenges. The inherent characteristics of the SGs are currently used for providing ancillary services (ASs), following the instructions of the Transmission System Operator, while the DRESs are obliged to offer specific system support functions, without being remunerated for these functions, but only for the energy they inject. This changing environment has prompted the integration of energy storage systems as a solution for transfusing new characteristics and elaborating their business in the electricity markets, while the smart grid infrastructure and the upcoming microgrid architectures contribute to the transformation of the distribution grid. This review investigates the existing ASs in transmission system with the respective markets (emphasizing the DRESs’ participation in these markets) and proposes new ASs at distribution grid level, with emphasis to inertial response, active power ramp rate control, frequency response, voltage regulation, fault contribution and harmonic mitigation. The market tools and mechanisms for the procurement of these ASs are presented evolving the existing role of the Operators. Finally, potential barriers in the technical, regulatory, and financial framework have been identified and analyzed.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3460
Author(s):  
Luca Mendicino ◽  
Daniele Menniti ◽  
Anna Pinnarelli ◽  
Nicola Sorrentino ◽  
Pasquale Vizza ◽  
...  

With the introduction of the renewable energy communities in the current electrical market environment, it becomes possible to aggregate small generation resources and users’ loads to exchange power within the aggregation and at the same time provide services to the electrical system. The renewable energy community of users equipped with nanogrid technology allows performing an adequate level of flexibility. It may be the solution to coordinate in the best possible way the energy resources in order to increase the community self-consumption and to provide ancillary services to the grid. In this paper, a model for the interaction between the Distribution System Operator (DSO)—Transmission System Operator (TSO) and the energy community based on nanogrids is proposed and an operational example is presented.


Sign in / Sign up

Export Citation Format

Share Document