inertial control
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 32)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Yingwei Wang ◽  
Yufeng Guo ◽  
Dongrui Zhang ◽  
Huajun Liu ◽  
Rongwu Song

2021 ◽  
Vol 9 ◽  
Author(s):  
Yien Xu ◽  
Hongmei Wang

With the increasing penetration of renewable energy generation, the frequency stability of a power grid can be significantly threatened. A doubly-fed induction generator (DFIG) participates in the frequency support of a power grid by releasing kinetic energy (KE) to boost the frequency nadir (FN). However, during rotor speed restoration, it is difficult to counterbalance the size of a second frequency drop (SFD) and the rotor speed recovery duration. This paper proposes an improved torque limit-based inertial control (TLBIC) to raise the FN by releasing less kinetic energy while guaranteeing rapid frequency stabilization with reduced SFD. To this end, when detecting a disturbance, the DFIG enhances the active reference power to the torque limit, and then the active power reduces smoothly based on an exponential function until the maximum power point tracking (MPPT) curve is met, and the rotor speed reverts to the initialization operating condition along the MPPT curve. A simulation system model with various wind power penetrations is established in EMTP-RV. Results show that the proposed scheme boosts the FN at a high level with less KE and guarantees rapid frequency stabilization.


Author(s):  
Jin Wang ◽  
Dapeng Zheng ◽  
Qian Zhang ◽  
Hailong Li ◽  
Chunyi Zhu

2021 ◽  
Vol 11 (17) ◽  
pp. 8259
Author(s):  
Yien Xu ◽  
Dejian Yang ◽  
Jiejie Huang ◽  
Xinsong Zhang ◽  
Liang Hua

With the fast growth in the penetration of wind power, doubly fed induction generators (DFIGs) are recommended for their ability to enforce grid codes that provide inertial control services by releasing rotational energy. However, after supporting the system frequency, a second frequency drop (SFD) is prone to occurring to regain the rotor speed caused by the sudden reduction in output. In this article, we propose a torque limit-based fast stepwise inertial control scheme of a DFIG using a piecewise reference function for reducing the SFD while preserving the frequency nadir (FN) with less rotor energy released. To achieve the first objective, the power reference increases to the torque limit and then decays with the rotor speed toward the preset operating point. To achieve the second objective, the power reference smoothly lessens over time based on the exponential function. The performance of the proposed stepwise inertial control strategy was studied under various scenarios, including constant wind speed and ramp down wind speed conditions. The test results demonstrated that the frequency stability is preserved during the frequency support phase, while the second frequency drop and mechanical stress on the wind turbine reduce during the rotor speed restoration phase when the DFIG implements the proposed stepwise inertial control scheme.


2021 ◽  
Author(s):  
Chenguang Wang ◽  
Chongtao Li ◽  
Kehan Zeng ◽  
Yiping Chen ◽  
Liang Xiao ◽  
...  

2021 ◽  
Vol 18 (176) ◽  
Author(s):  
Madhur Mangalam ◽  
Damian G. Kelty-Stephen

Quiet standing exhibits strongly intermittent variability that has inspired at least two interpretations. First, variability can be intermittent through the alternating engagement and disengagement of complementary control processes at distinct scales. A second and perhaps deeper way to interpret this intermittency is through the possibility that postural control depends on cascade-like interactions across many timescales at once, suggesting specific non-Gaussian distributional properties at different timescales. Multiscale probability density function (PDF) analysis shows that quiet standing on a stable surface exhibits a crossover from low, increasing non-Gaussianity (consistent with exponential distributions) at shorter timescales, reflecting inertial control, towards higher non-Gaussianity. Feedback-based control at medium to longer timescales yields a linear decrease that is characteristic of cascade dynamics. Destabilizing quiet standing with an unstable surface or closed eyes serves to attenuate inertial control and to elicit more of the feedback-based control over progressively shorter timescales. The result was to strengthen the appearance of the linear decay indicating cascade dynamics. Finally, both linear and nonlinear indices of postural sway also govern the relative strength of crossover or of linear decay, suggesting that tempering of non-Gaussianity across log-timescale is a function of both extrinsic constraints and endogenous postural control. These results provide new evidence that cascading interactions across longer timescales supporting postural corrections can even recruit shorter timescale processes with novel task constraints that can destabilize posture.


2021 ◽  
Vol 261 ◽  
pp. 01053
Author(s):  
Chenghan Zhao ◽  
Xiang Li ◽  
Da Xie ◽  
Mingjie Pan

This paper put forward the inertial control strategy based on the control of charge and discharge of supercapacitor and the trigger angle of H-bridge which integrates photovoltaic (PV) system. The whole cascade H-bridge structure is composed of traditional photovoltaic module, Boost/Buck circuit, supercapacitor (SC), and H-bridge circuit. First, the charging state and the inertial energy power support of the SC are analysed. Then the control strategy of the cascade H-bridge is proposed. To verify the efficiency of the control strategy, a cascade chain consists of 12 H-bridge unit was built in EMTP simulation software. Finally the simulation results prove that the newly developed SC-integrated cascade module can do inertial energy support well, which is important to the coordination between the power system and solar energy.


Sign in / Sign up

Export Citation Format

Share Document