scholarly journals Power Limit Control Strategy for Household Photovoltaic and Energy Storage Inverter

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1704
Author(s):  
Zhongyan Xu ◽  
Shengyu Tao ◽  
Hongtao Fan ◽  
Jie Sun ◽  
Yaojie Sun

The increased installation capacity of grid-connected household photovoltaic (PV) systems has been witnessed worldwide, and the power grid is facing the challenges of overvoltage during peak power generation and limited frequency regulation performance. With the dual purpose of enhancing the power grid safety and improving the PV utilization rate, the maximum feed-in active power can be regulated by modifying the maximum power point tracking (MPPT) algorithm and battery energy storage (BES) accessibility as control instructions. However, the existing methods not only waste installed PV capacity, but it becomes no longer accessible when the state of charge (SOC) of the BES approaches its upper limit. In response to the above problem, this paper proposes a power limit control strategy to coordinate the MPPT algorithm and the BES accessibility. The proposed strategy directly controls the inverter output current according to the power limit instructions from the electric operation control centers, leading to a bus voltage difference. The difference serves as a control signal for BES and PV. Under a power-limiting scenario, priority is given to power regulation through energy storage to absorb the limited active power. When the SOC of the BES reaches the upper limit of charging, modification of the PV MPPT algorithm facilitates the inverter output power to meet the power limit requirements. To further verify the effectiveness of the proposed power limit control strategy, both simulation and experimental studies are conducted, which consistently indicated a synchronized inverter current with grid voltage and a rapid power response of the power-limiting instruction within 0.2 s. The power limit control strategy not only improves the PV energy utilization but also supports the safe and reliable operation of the power gird in the context of soaring renewable energy penetration.

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2645
Author(s):  
Gaojun Meng ◽  
Yang Lu ◽  
Haitao Liu ◽  
Yuan Ye ◽  
Yukun Sun ◽  
...  

In order to efficiently use energy storage resources while meeting the power grid primary frequency modulation requirements, an adaptive droop coefficient and SOC balance-based primary frequency modulation control strategy for energy storage is proposed. Taking the SOC of energy storage battery as the control quantity, the depth of energy storage output is adaptively adjusted to prevent the saturation or exhaustion of energy storage SOC. The balanced control strategy is introduced to realize the rational utilization of resources and the fast balance of SOC in the process of primary frequency modulation of energy storage battery under different charge states. Then, four evaluation indexes are proposed to evaluate the effect of primary frequency modulation and SOC maintenance. Taking a regional power grid as an example, a simulation analysis is carried out under step load disturbance and continuous load disturbance. According to the simulation results, the proposed control strategy is effective in power system frequency regulation and battery SOC maintenance.


2014 ◽  
Vol 494-495 ◽  
pp. 1561-1568
Author(s):  
Ning Ning Li ◽  
Xi Sheng Tang ◽  
Guo Wei Zhang

A novel topology structure of supercapacitor energy storage converter (ESC) is presented with two cascaded bidirectional DC/DC converters connected to a bidirectional DC/AC converter. It can promote the energy utilization rate of supercapacitor and improve the ability of powering unbalanced and nonlinear loads. The effect of the midpoint voltage fluctuation of the cascaded connected DC bus capacitors on output voltage is analyzed, followed by the influence mechanism unbalanced and nonlinear loads. The control strategy to restrain the unbalance and zero sequence harmonic is proposed. The theoretical analysis and the proposed method are verified through simulations and experiments on a 100kVA supercapacitor ESC prototype.


Author(s):  
Chunlai Li ◽  
Shun Yuan

Abstract In order to improve the friendliness of the grid connection of new energy power generation, the new energy photovoltaic (PV) unit is equivalent to a synchronous generator in the power system and a virtual synchronous generator (VSG)-controlled PV energy storage complementary grid-connected power generation system model is established and studied to analyze the VSG. When power is supplied to the load together with the power grid, the energy storage unit inside the VSG will release and store the electrical energy according to the fluctuation of the PV output, which plays the role of the adjustment of the prime mover; in the case of load power fluctuations, and power grid assume the corresponding active power regulation according to their capacity. The amount of active power adjustment to jointly and maintain the power balance inside the system under the condition of fluctuating load power. The overall system architecture and control strategy of PV grid-connected inverter based on VSG algorithm are proposed. The PV-VSG proposed here not only takes into account the maximum power point tracking control but also has independent participation in the power supply. A series of characteristics of synchronous generators, such as network frequency modulation voltage regulation and inertia damping, can effectively improve the new energy PV power generation system and promote the new energy consumption. The results of system simulation and field demonstration operation fully show the effectiveness and correctness of the proposed control strategy based on VSG algorithm.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1121
Author(s):  
Rozmysław Mieński ◽  
Przemysław Urbanek ◽  
Irena Wasiak

The paper includes the analysis of the operation of low-voltage prosumer installation consisting of receivers and electricity sources and equipped with a 3-phase energy storage system. The aim of the storage application is the management of active power within the installation to decrease the total power exchanged with the supplying network and thus reduce energy costs borne by the prosumer. A solution for the effective implementation of the storage system is presented. Apart from the active power management performed according to the prosumer’s needs, the storage inverter provides the ancillary service of voltage regulation in the network according to the requirements of the network operator. A control strategy involving algorithms for voltage regulation without prejudice to the prosumer’s interest is described in the paper. Reactive power is used first as a control signal and if the required voltage effect cannot be reached, then the active power in the controlled phase is additionally changed and the Energy Storage System (ESS) loading is redistributed in phases in such a way that the total active power set by the prosumer program remains unchanged. The efficiency of the control strategy was tested by means of a simulation model in the PSCAD/EMTDC program. The results of the simulations are presented.


Sign in / Sign up

Export Citation Format

Share Document