Normalized Capacity of Free Space Optical Link in Malaga Channel with Pointing Error using Power and Rate Adaptation Technique

Author(s):  
Marko Smilic ◽  
Dejan Milic ◽  
Zorica Nikolic ◽  
Petar Spalevic ◽  
Nenad Stanojevic
2017 ◽  
Vol 38 (4) ◽  
Author(s):  
Pooja Gopal ◽  
V. K. Jain ◽  
Subrat Kar

AbstractDegradation due to atmospheric turbulence leads to significant outage in a free space optical satellite uplink with fixed transmitter parameters. If the channel state is known at the transmitter, then its parameters can be suitably changed, and there could be a considerable improvement in channel capacity. However, the extremely long link length of an Earth-to-Geostationary Earth Orbit (GEO) satellite link would render feedback of channel state from the receiver infeasible, before the channel changes. In this paper, a channel pre-estimation method at the transmitter is proposed, and the expression for capacity with transmitter power and rate adaptation is derived. The results are compared with that of the capacity with outage. It is observed that there can be an improvement by a factor of 1.66 in achievable average capacity per Hertz with the adaptive transmitter. Also, the outage probability is reduced from 18.02 % to almost 0.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bithi Mitra ◽  
Md. Jahedul Islam

AbstractIn this paper, the performance of two-dimensional (2-D) wavelength-hopping/time-spreading (WH/TS) optical code division multiple access (OCDMA) system over free space optical (FSO) channel is analyzed in the presence of pointing error and different weather conditions. Prime code scheme is employed for both wavelength-hopping and time-spreading to address user code-matrix. The operating central wavelength of 1550 nm is considered to demonstrate the bit error rate (BER) performance of the proposed system as a function of various system parameters. The required optical power of the proposed system is determined to maintain a BER value of 10−9. The numerical evaluation interprets that the BER performance is highly dependent on transmission length, transmitted power, pointing error angle as well as the number of simultaneous user. It is also observed that the 2-D OCDMA system over free space needs minimum required optical power in case of rainy atmospheric condition, but it is maximum for foggy atmospheric condition.


Sign in / Sign up

Export Citation Format

Share Document