Approximate sum rate for massive multiple-input multiple-output two-way relay with Ricean fading

2016 ◽  
Vol 10 (12) ◽  
pp. 1493-1500 ◽  
Author(s):  
Xinshui Wang ◽  
Ruijin Sun ◽  
Ying Wang
2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Yeonjin Jeong ◽  
Jooheum Yoon ◽  
Sang Hyun Lee ◽  
Yun Hee Kim

We consider a multidevice network with asymmetric antenna configurations which supports not only communications between an access point and devices but also device-to-device (D2D) communications for the Internet of things. For the network, we propose the transmit and receive beamforming with the channel state information (CSI) for virtual multiple-input multiple-output (MIMO) enabled by D2D receive cooperation. We analyze the sum rate achieved by a device pair in the proposed method and identify the strategies to improve the sum rate of the device pair. We next present a distributed algorithm and its equivalent algorithm for device pairing to maximize the throughput of the multidevice network. Simulation results confirm the advantages of the transmit CSI and D2D cooperation as well as the validity of the distributive algorithm.


2020 ◽  
Vol 37 (6) ◽  
pp. 1061-1074
Author(s):  
Lokesh Bhardwaj ◽  
Ritesh Kumar Mishra

The effects of pilot contamination (PC) on the performance of multi-cell multi-user massive multiple input multiple output (MC-MU-m-MIMO) system in uplink has been analyzed in this article. In a multi-cell scenario, the channel estimation (CE) at the desired cell using pilot reuse to avoid significant overhead results in poor CE due to PC. The improvement in degraded performance due to the effect of PC has been shown using low Density Parity Check (LDPC) codes. The comparative analysis of performance in terms of variation in bit error rate (BER) with the signal to noise ratio (SNR) for LDPC coded and uncoded information blocks of users has been shown when the number of cells sharing the same frequency band is varied. Further, the expression for sum-rate has been derived and its variation with the number of base station (BS) antennas has also been shown. The simulated results have shown that the LDPC coded scheme performs better than the uncoded counterpart and the sum-rate capacity increases when the strength of channel coefficients between the BS antennas of the desired cell and the users of remaining cells is less.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


Kursor ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Apriana Toding

In  this  paper,  we develop  the  optimal  relay design  for  multiple-input multiple-output (MIMO)  multi wireless relaying networks,  when we consider  the problem of zero-forcing  processing  is studied  for multi-input multi- output  multi-relay  communication system in which MIMO source-destination  pairs   communicate   simultaneously.   It is assumed that due to severe shadowing effects which communication links can be established  only with the aid of relay node. The aim is to design the relay amplification matrix  to  maximize  the  achievable  communication sum- rate  through the  relay, which  in general  amplifying-and- forward  relaying  mechanisms   are  considered.   The  zero forcing (ZF) algorithm has studied for a MIMO multi relay network  by  comparing   its  performance in  terms  of bit- error-rate (BER)  at  destination  algorithm.  In  particular, we investigate  its performance with and without  using the ZF at  the relay. Our  results demonstrate that  the system performance can  be  significantly  improved  by  using  the ZF algorithm at relay (optimal  relay ZF algorithm)


Sign in / Sign up

Export Citation Format

Share Document