scholarly journals Synchronisation of stochastic-coupled intermittent control systems with delays and Lévy noise on networks without strong connectedness

2019 ◽  
Vol 13 (1) ◽  
pp. 36-49 ◽  
Author(s):  
Hui Zhou ◽  
Wenxue Li
2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yong Ren ◽  
Qi Zhang

<p style='text-indent:20px;'>In this work, the issue of stabilization for a class of continuous-time hybrid stochastic systems with Lévy noise (HLSDEs, in short) is explored by using periodic intermittent control. As for the unstable HLSDEs, we design a periodic intermittent controller. The main idea is to compare the controlled system with a stabilized one with a periodic intermittent drift coefficient, which enables us to use the existing stability results on the HLSDEs. An illustrative example is proposed to show the feasibility of the obtained result.</p>


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 617
Author(s):  
Jianpeng Ma ◽  
Shi Zhuo ◽  
Chengwei Li ◽  
Liwei Zhan ◽  
Guangzhu Zhang

When early failures in rolling bearings occur, we need to be able to extract weak fault characteristic frequencies under the influence of strong noise and then perform fault diagnosis. Therefore, a new method is proposed: complete ensemble intrinsic time-scale decomposition with adaptive Lévy noise (CEITDALN). This method solves the problem of the traditional complete ensemble intrinsic time-scale decomposition with adaptive noise (CEITDAN) method not being able to filter nonwhite noise in measured vibration signal noise. Therefore, in the method proposed in this paper, a noise model in the form of parameter-adjusted noise is used to replace traditional white noise. We used an optimization algorithm to adaptively adjust the model parameters, reducing the impact of nonwhite noise on the feature frequency extraction. The experimental results for the simulation and vibration signals of rolling bearings showed that the CEITDALN method could extract weak fault features more effectively than traditional methods.


2020 ◽  
Vol 42 (1) ◽  
pp. 65-84
Author(s):  
Jinzhong Ma ◽  
Yong Xu ◽  
Yongge Li ◽  
Ruilan Tian ◽  
Shaojuan Ma ◽  
...  

AbstractIn real systems, the unpredictable jump changes of the random environment can induce the critical transitions (CTs) between two non-adjacent states, which are more catastrophic. Taking an asymmetric Lévy-noise-induced tri-stable model with desirable, sub-desirable, and undesirable states as a prototype class of real systems, a prediction of the noise-induced CTs from the desirable state directly to the undesirable one is carried out. We first calculate the region that the current state of the given model is absorbed into the undesirable state based on the escape probability, which is named as the absorbed region. Then, a new concept of the parameter dependent basin of the unsafe regime (PDBUR) under the asymmetric Lévy noise is introduced. It is an efficient tool for approximately quantifying the ranges of the parameters, where the noise-induced CTs from the desirable state directly to the undesirable one may occur. More importantly, it may provide theoretical guidance for us to adopt some measures to avert a noise-induced catastrophic CT.


Sign in / Sign up

Export Citation Format

Share Document