scholarly journals Adaptive prescribed performance terminal sliding mode attitude control for quadrotor under input saturation

2020 ◽  
Vol 14 (17) ◽  
pp. 2473-2480
Author(s):  
Gang Xu ◽  
Yuanqing Xia ◽  
Di-Hua Zhai ◽  
Dailiang Ma
2021 ◽  
Author(s):  
Kang Liu ◽  
Rujing Wang

Abstract This study considers the problem of finitetime attitude control for quadrotor unmanned aerial vehicles (UAVs) subject to parametric uncertainties, external disturbances, input saturation, and actuator faults. Under the strong approximation of radial basis function neural networks (RBFNN), an adaptive finitetime NN observer is first presented to obtain the accurate information of unavailable angular velocity. More importantly, an adaptive mechanism to adjust the output gain of the fuzzy logic system (FLS) is developed to avoid the selection of larger control gains, and can even work well without the prior information on the bound of the lumped disturbance. Based on the nonsingular fast terminal sliding mode manifold, a novel switching control law is designed by incorporating the adaptive FLS and fast continuous controller in order to remove the undesired chattering phenomenon and solve the negative effects induced from the parametric uncertainty, external disturbance, and actuator fault. To deal with the input saturation, an auxiliary system is constructed. The rigorous theoretical analysis is given to prove that all the signals in the closed-loop system are uniformly bounded, and tracking errors converge into bounded neighborhoods near the origin in finite time. Moreover, the issue of selecting control parameters is analyzed in detail. Last but not least, the comparative simulation results show the validity and feasibility of the proposed control framework.


2018 ◽  
Vol 25 (5) ◽  
pp. 1008-1018 ◽  
Author(s):  
Ruidong Yan ◽  
Zhong Wu

There exist complex disturbances in the attitude control system of flexible spacecrafts, such as space environmental disturbances, flexible vibrations, inertia uncertainties, payload motions, etc. To suppress the effects of these disturbances on the performance of attitude stabilization, a super-twisting disturbance observer (STDO)-based nonsingular terminal sliding mode controller (NTSMC) is proposed in this paper. First, STDO is designed for a second-order dynamical system constructed by applying the lumped disturbance and its integral as state variables, and applying the integral as virtual measurement. Since the virtual measurement is obtained by integrating the inverse attitude dynamics, STDO not only avoids the differential operation of angular velocity, but also fully utilizes the information of a nonlinear model. By combining STDO with NTSMC, a composite controller is designed to achieve high-accuracy spacecraft attitude stabilization. Since most of the disturbances are compensated for by a STDO-based feedforward compensator, only a small switching gain is required to deal with the residual disturbances and uncertainties. Thus, the chattering phenomenon of the controller can be alleviated to a great extent. Finally, numerical simulations for the comparison between STDO-based NTSMC and nonlinear disturbance observer-based NTSMC are carried out in the presence of complex disturbances to verify the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document