Conformal array pattern synthesis using the weighted alternating reverse projection method considering mutual coupling and embedded-element pattern effects

2012 ◽  
Vol 6 (6) ◽  
pp. 621 ◽  
Author(s):  
R. Karimzadeh ◽  
M. Hakkak ◽  
A. Haddadi ◽  
K. Forooraghi
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Roghieh Karimzadeh Baee ◽  
Keyvan Forooraghi ◽  
Somayyeh Chamaani

This paper addresses conformal array synthesis as a constrained multiobjective optimization problem. Simultaneous reduction of side lobe level (SLL) and cross-polarization (XPL) level is aimed with a constraint on main beam direction. A hybrid of weighted alternating reverse projection (WARP) and two local best multiobjective particle swarm optimization (2LB-MOPSO) is proposed to optimize the pattern. First, the WARP method finds a moderate and feasible solution. Second, 2LB-MOPSO begins with an initial population including the solution of WARP and penalty functions for constraint handling. Involving WARP result in the initial population of 2LB-MOPSO leads to higher convergence rate, avoiding local extermum traps and less sensitivity to penalty functions. Compared to WARP method which stagnates rapidly, the proposed hybrid method gives better SLL and XPL after adequate iterations. In addition, as 2LB-MOPSO offers a set of optimum solutions (Pareto front) instead of a single solution, this method provides more degrees of freedom in selection of proper practical arrays. Finally, to examine the mutual coupling consideration in array design, the same procedure was applied ignoring the mutual coupling between elements. The results show that the SLL and XPL strongly depend on mutual coupling.


2021 ◽  
Vol 36 (6) ◽  
pp. 707-717
Author(s):  
Taimur Khan ◽  
Muhammad Khattak ◽  
Adnan Tariq

This paper presents a novel technique based on Hybrid Spatial Distance Reduction Algorithm (HSDRA), to compensate the effects of deformity and mutual coupling occurred due to surface change in conformal arrays. This antenna surface deformation shifts the position of null points and loss of the main beam resulting in reduced antenna gain along with substantial undesirable effects on the antenna performance. The proposed algorithm, which cumulatively incorporates the Linearly Constraint Least Square Optimization (LCLSO) and Quadratically Constraint Least Square Optimization (QCLSO) techniques, is formulated to minimize/reduce the absolute distance between the actual (simulated/measured) radiation pattern and the desired radiation pattern while keeping the direction of main beam and nulls position under control. In particular, a 4x4 conformal microstrip phased array from planar surface is deformed to prescribe spherical-shape surface with various radii of curvature, is validated. For the enhancement of Gain of the conformal array antenna, Gain Maximization Algorithm is also proposed, the simulated results of which is compared to the traditional Phase compensation technique and unconstraint least squares optimization. The analytical results for both planar and spherical deformed configurations are first evaluated in MATLAB and then validated through Computer Simulation Technology (CST).


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Bin Sun ◽  
Chunheng Liu ◽  
Yang Liu ◽  
Xiaofang Wu ◽  
Yongzhen Li ◽  
...  

The pattern synthesis and activated element selection for conformal array is investigated based on hybrid particle swarm optimization-gravitational search algorithm (PSOGSA) in this paper. With the introduction of PSOGSA algorithm which is a novel hybrid optimization technique, the element excitations are optimized to obtain the desired pattern for conformal array in the case of considering uncoupled and coupled element pattern. Numerical simulation and full-wave electromagnetic calculation verify the advantage and efficiency of our method. Then, a novel strategy of activated element selection based on PSOGSA algorithm is proposed for saving the energy consumption in conformal array.


Sign in / Sign up

Export Citation Format

Share Document