Calculation of the impedance of rotor cage end rings

1993 ◽  
Vol 140 (1) ◽  
pp. 51 ◽  
Author(s):  
S. Williamson ◽  
M.A. Mueller
Keyword(s):  
Author(s):  
Sang Bin Lee ◽  
Jaehoon Shin ◽  
Yonghyun Park ◽  
Heonyoung Kim ◽  
Jongwan Kim
Keyword(s):  

2015 ◽  
Vol 12 (3) ◽  
pp. 303-320
Author(s):  
Miloje Kostic

On the basis of the known fact that all air gap main flux density variations are enclosed by permeance slot harmonics, only one component of stray losses in rotor (stator) iron is considered in the new classification, instead of 2 components: rotor (stator) pulsation iron losses, and rotor (stator) surface iron losses. No-load rotor cage (high-frequency) stray losses are usually calculated. No-load stray losses are caused by the existence of space harmonics: the air-gap slot permeance harmonics and the harmonics produced by no-load MMF harmonics. The second result is the proof that the corresponding components of stray losses can be calculated separately for the mentioned kind of harmonics. Determination of the depth of flux penetration and calculations of high frequency iron losses are improved. On the basis of experimental validation, it is proved that the new classification of no-load stray losses and the proposed method for the calculation of the total value is sufficiently accurate.


2016 ◽  
pp. 433-451
Author(s):  
Iliya Boguslawsky ◽  
Nikolay Korovkin ◽  
Masashi Hayakawa

2020 ◽  
Vol 25 (1) ◽  
pp. 11 ◽  
Author(s):  
Abdelhak Mekahlia ◽  
Eric Semail ◽  
Franck Scuiller ◽  
Hussein Zahr

For three-phase induction machines supplied by sinusoidal current, it is usual to model the n-bar squirrel-cage by an equivalent two-phase circuit. For a multiphase induction machine which can be supplied with different harmonics of current, the reduced-order model of the rotor must be more carefully chosen in order to predict the pulsations of torque. The proposed analysis allows to avoid a wrong design with non-sinusoidal magnetomotive forces. An analytical approach is proposed and confirmed by Finite-Element modelling at first for a three-phase induction machine and secondly for a five-phase induction machine.


Author(s):  
Aleksander Leicht ◽  
Krzysztof Makowski

Purpose The purpose of the paper is to present an analysis of an influence of shape and material of rotor bars on the process of self-excitation and performance characteristics of single-phase, self-excited induction generator (SP-SEIG). Design/methodology/approach The presented analysis is based on the results of transient simulations of SP-SEIG performed with the use of field-circuit model of the machine. Four various shapes of the rotor bars and two different conductor materials were investigated. The results for the base model with rounded trapezoidal rotor slots were validated by measurements. Findings An improvement of the performance characteristics – the extension of the stable operating range of the generator – was obtained for rectangular copper rotor bars. The improvement is the result of strong skin effect in the squirrel rotor cage. Application of round rotor slots results in shorter time of voltage build-up during the self-excitation of the generator caused by less apparent deep bar effect in round bars. Originality/value The originality of the paper is the application of the copper rotor cage in the single-phase, self-excited induction generator. Its use is beneficial, as it allows for extension of the range of stable operating range. The results may be used for designing new constructions of the single-phase, self-excited induction generators, as well as the constructions based on general purpose single-phase induction motors.


Sign in / Sign up

Export Citation Format

Share Document