Detailed measurement of scattering by a spheroidal particle having varying proportions of ice and water

1989 ◽  
Vol 136 (4) ◽  
pp. 351 ◽  
Author(s):  
A.L. Hume ◽  
L.J. Auchterlonie
VASA ◽  
2021 ◽  
Vol 50 (1) ◽  
pp. 2-10 ◽  
Author(s):  
Xin Li ◽  
Giuseppe D’Amico ◽  
Cristiano Quintini ◽  
Teresa Diago Uso ◽  
Sameer Gadani ◽  
...  

Summary: Intravascular ultrasound (IVUS) has been used extensively in coronary applications. Its use in venous applications has increased as endovascular therapy has increasingly become the mainstay therapy for central venous diseases. IVUS has been used for both diagnostic and therapeutic purposes in managing venous stenotic disease, venous occlusive disease, and IVC filter placement and removal. IVUS has been proven to be effective in providing detailed measurement of the venous anatomy, which aid in determining the appropriate size and the approach for venous stent placement. In IVC filter placement, IVUS can provide detailed measurement and guide IVC filter placement in emergent and critical care settings. It also has certain utility in filter removal. At any rate, to date there are only a few studies examining its impact on patient outcomes. Prospective randomized controlled trials are warranted in the future.


2021 ◽  
pp. 100106
Author(s):  
Yongjie Jia ◽  
Renxian Li ◽  
Wenze Zhuang ◽  
Jiarui Liang

Author(s):  
REHANA BEGUM A. ◽  
GANESH N. S. ◽  
VINEETH CHANDY

This review article deals with the various pelletization techniques utilized in the pharmaceutical industry for spheroidal particle production i.e., pellet for mainly oral administration which can be further formulated into several other dosage forms such as tablets, capsules or can be administered as such. Now-a-days oral administration has become the most versatile, convenient and common route of drug administration which ultimately focuses on patient compliance. The technique which is setting horizon in pelletization is “Extrusion Spheronization” because of its simple and easy steps involved in pellet production in a faster way. This review also includes the characterization and evaluation of pellets to ensure its quality, safety and efficacy to give out the required therapeutic activity after administration.


Author(s):  
Alexandros Christos Chasoglou ◽  
Panagiotis Tsirikoglou ◽  
Anestis I Kalfas ◽  
Reza S Abhari

Abstract In the present study, an adaptive randomized Quasi Monte Carlo methodology is presented, combining Stein’s two-stage adaptive scheme and Low Discrepancy Sobol sequences. The method is used for the propagation and calculation of uncertainties related to aerodynamic pneumatic probes and high frequency fast response aerodynamic probes (FRAP). The proposed methodology allows the fast and accurate, in a probabilistic sense, calculation of uncertainties, ensuring that the total number of Monte Carlo (MC) trials is kept low based on the desired numerical accuracy. Thus, this method is well-suited for aerodynamic pressure probes, where multiple points are evaluated in their calibration space. Complete and detailed measurement models are presented for both a pneumatic probe and FRAP. The models are segregated in sub-problems allowing the evaluation and inspection of intermediate steps of MC in a transparent manner, also enabling the calculation of the relative contributions of the elemental uncertainties on the measured quantities. Various, commonly used sampling techniques for MC simulation and different adaptive MC schemes are compared, using both theoretical toy distributions and actual examples from aerodynamic probes' measurement models. The robustness of Stein's two-stage scheme is demonstrated even in cases when signiffcant deviation from normality is observed in the underlying distribution of the output of the MC. With regards to FRAP, two issues related to piezo-resistive sensors are addressed, namely temperature dependent pressure hysteresis and temporal sensor drift, and their uncertainties are accounted for in the measurement model. These effects are the most dominant factors, affecting all flow quantities' uncertainties, with signiffcance that varies mainly with Mach and operating temperature. This work highlights the need to construct accurate and detailed measurement models for aerodynamic probes, that otherwise will result in signiffcant underestimation (in most cases in excess of 50%) of the final uncertainties.


2009 ◽  
Vol 18 (6) ◽  
pp. 727 ◽  
Author(s):  
Davide Ascoli ◽  
Rachele Beghin ◽  
Riccardo Ceccato ◽  
Alessandra Gorlier ◽  
Giampiero Lombardi ◽  
...  

Calluna vulgaris-dominated heathlands are globally important habitats and extremely scarce outside of north-west Europe. Rotational fire, grazing and cutting by local farmers were dominant features of past heathland management throughout Europe but have been abandoned, altering the historical fire regime and habitat structure. We briefly review research on Calluna heathland conservation management and provide the background and methodology for a long-term research project that will be used to define prescribed fire regimes in combination with grazing and cutting, for management of Calluna heathlands in north-west Italy. We outline the ecological and research issues that drive the fire experiment, making explicit the experimental design and the hypotheses that will be tested. We demonstrate how Adaptive Management can be used to inform decisions about the nature of fire prescriptions where little formal knowledge exists. Experimental plots ranging from 600 to 2500 m2 are treated according to one of eight alternative treatments (various combinations of fire, grazing and cutting), each replicated four times. To date, all treatments have been applied for 4 years, from 2005 to 2008, and a continuation is planned. Detailed measurement of fire characteristics is made to help interpret ecological responses at a microplot scale. The results of the experiment will be fed back into the experimental design and used to inform heathland management practice in north-west Italy.


Sign in / Sign up

Export Citation Format

Share Document