Split-ring resonator-loaded X-band waveguide supporting negative group velocity

Author(s):  
Joaquim J. Barroso ◽  
Joaquim P. Leite ◽  
Pedro J. Castro ◽  
Ugur C. Hasar ◽  
Jose Edimar B. Oliveira
2017 ◽  
Vol 7 (1.1) ◽  
pp. 507 ◽  
Author(s):  
B T P Madhav ◽  
M Venkateswara Rao ◽  
K Manisahithi ◽  
D S S Sarvani ◽  
M Dharani ◽  
...  

A compact periwinkle flower shaped fractal antenna loaded with split-ring resonator on either side of the feedline is proposed in this article. The proposed antenna consists of partial ground on flipside and a periwinkle flower petal is located on the rectangular patch. The proposed antenna works in multiband i.e., at 4.1GHz,4.5GHz,4.8Ghz(S-band) at 6.7GHz,6.75GHz(C-band) at 9.4GHz(X-band) and at 12.7(ku) i.e., proposed antenna covers almost one frequency at all radar frequency bands. The proposed antenna has been analyzed and maximum gain of 4dB and radiation efficiency of 87 percent is observed.


2013 ◽  
Vol 55 (7) ◽  
pp. 1537-1540 ◽  
Author(s):  
Ki-Cheol Yoon ◽  
Hyunwook Lee ◽  
Jong-Chul Lee ◽  
Ki-Byoung Kim ◽  
Seong-Cheol Kim

Frequenz ◽  
2018 ◽  
Vol 72 (7-8) ◽  
pp. 381-384
Author(s):  
Hao Zhang ◽  
Wei Kang ◽  
Wen Wu

Abstract A compact balanced bandpass filter (BPF) based on complementary split ring resonator (CSRR) -loaded substrate integrated waveguide (SIW) structure is reported in this paper. Both TE102 and TE201 modes of the SIW cavity can be excited under differential-mode (DM) operation with the proper positions of the balanced feeds. Meanwhile, the CSRR etched on the top layer of the substrate can also be excited by the axial electric excitation. Then, three transmission poles and two transmission zeros (TZs) have been obtained which improve the selectivity of the DM passband. To verify the above design concept, an X-band prototype operating at 8 GHz has been fabricated and measured. A good agreement is observed between the simulations and the measurements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md. Rashedul Islam ◽  
Mohammad Tariqul Islam ◽  
Mohamed S. Soliman ◽  
Mohd Hafiz Baharuddin ◽  
Kamarulzaman Mat ◽  
...  

AbstractIn this research paper, an inverse double V loaded complementary square split ring resonator based double negative (DNG) metamaterial has been developed and examined numerically and experimentally. The electromagnetic (EM) properties of the proposed inverse double V-structure were calculated using computer simulation technology (CST-2019) and the finite integration technique (FIT). The designed metamaterial provides three resonance frequencies are 2.86, 5, and 8.30 GHz, covering S-, C-, and X-bands. The total size of the recommended unit cell is 8 $$\times$$ × 8 $$\times$$ × 1.524 mm3, and a high effective medium ratio (EMR) value of 13.11 was found from it. The − 10 dB bandwidths of this structure are 2.80 to 2.91, 4.76 to 5.17, and 8.05 to 8.42 GHz. The proposed structure's novelty is its small size, simple resonator structure, which provides double negative characteristics, high EMR, maximum coverage band, and required resonance frequencies. Wi-Fi network speeds are generally faster when frequencies in the 5 GHz band are used. Since the proposed structure provides a 5 GHz frequency band, hence the suggested metamaterial can be used in Wi-Fi for high bandwidth and high-speed applications. The marine radars operate in X-band, and weather radar works in S-band. Since the designed cell provides two more resonance frequencies, i.e., 2.86 GHz (S-band) and 8.30 GHz (X-band), the proposed metamaterial could be used in weather radar and marine radar. The design process and various parametric studies have been analyzed in this article. The equivalent circuit is authenticated using the advanced design system (ADS) software compared with CST simulated result. The surface current, E-field, and H-field distributions have also been analyzed. Different types of array structure, i.e., 1 $$\times$$ × 2, 2 $$\times$$ × 2, 3 $$\times$$ × 3, 4 $$\times$$ × 4, and 20 $$\times$$ × 25 is examined and validated by the measured result. The simulated and measured outcome is an excellent agreement for the inverse double V loaded CSSRR unit cell and array. We showed the overall performance of the suggested structure is better than the other structures mentioned in the paper. Since the recommended metamaterial unit cell size is small, provides desired resonance frequency, gives a large frequency band and high EMR value; hence the suggested metamaterial can be highly applicable for Radar and Wi-Fi.


Sign in / Sign up

Export Citation Format

Share Document