scholarly journals Metamaterial based on an inverse double V loaded complementary square split ring resonator for radar and Wi-Fi applications

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md. Rashedul Islam ◽  
Mohammad Tariqul Islam ◽  
Mohamed S. Soliman ◽  
Mohd Hafiz Baharuddin ◽  
Kamarulzaman Mat ◽  
...  

AbstractIn this research paper, an inverse double V loaded complementary square split ring resonator based double negative (DNG) metamaterial has been developed and examined numerically and experimentally. The electromagnetic (EM) properties of the proposed inverse double V-structure were calculated using computer simulation technology (CST-2019) and the finite integration technique (FIT). The designed metamaterial provides three resonance frequencies are 2.86, 5, and 8.30 GHz, covering S-, C-, and X-bands. The total size of the recommended unit cell is 8 $$\times$$ × 8 $$\times$$ × 1.524 mm3, and a high effective medium ratio (EMR) value of 13.11 was found from it. The − 10 dB bandwidths of this structure are 2.80 to 2.91, 4.76 to 5.17, and 8.05 to 8.42 GHz. The proposed structure's novelty is its small size, simple resonator structure, which provides double negative characteristics, high EMR, maximum coverage band, and required resonance frequencies. Wi-Fi network speeds are generally faster when frequencies in the 5 GHz band are used. Since the proposed structure provides a 5 GHz frequency band, hence the suggested metamaterial can be used in Wi-Fi for high bandwidth and high-speed applications. The marine radars operate in X-band, and weather radar works in S-band. Since the designed cell provides two more resonance frequencies, i.e., 2.86 GHz (S-band) and 8.30 GHz (X-band), the proposed metamaterial could be used in weather radar and marine radar. The design process and various parametric studies have been analyzed in this article. The equivalent circuit is authenticated using the advanced design system (ADS) software compared with CST simulated result. The surface current, E-field, and H-field distributions have also been analyzed. Different types of array structure, i.e., 1 $$\times$$ × 2, 2 $$\times$$ × 2, 3 $$\times$$ × 3, 4 $$\times$$ × 4, and 20 $$\times$$ × 25 is examined and validated by the measured result. The simulated and measured outcome is an excellent agreement for the inverse double V loaded CSSRR unit cell and array. We showed the overall performance of the suggested structure is better than the other structures mentioned in the paper. Since the recommended metamaterial unit cell size is small, provides desired resonance frequency, gives a large frequency band and high EMR value; hence the suggested metamaterial can be highly applicable for Radar and Wi-Fi.

2017 ◽  
Vol 7 (1.1) ◽  
pp. 507 ◽  
Author(s):  
B T P Madhav ◽  
M Venkateswara Rao ◽  
K Manisahithi ◽  
D S S Sarvani ◽  
M Dharani ◽  
...  

A compact periwinkle flower shaped fractal antenna loaded with split-ring resonator on either side of the feedline is proposed in this article. The proposed antenna consists of partial ground on flipside and a periwinkle flower petal is located on the rectangular patch. The proposed antenna works in multiband i.e., at 4.1GHz,4.5GHz,4.8Ghz(S-band) at 6.7GHz,6.75GHz(C-band) at 9.4GHz(X-band) and at 12.7(ku) i.e., proposed antenna covers almost one frequency at all radar frequency bands. The proposed antenna has been analyzed and maximum gain of 4dB and radiation efficiency of 87 percent is observed.


Author(s):  
Joaquim J. Barroso ◽  
Joaquim P. Leite ◽  
Pedro J. Castro ◽  
Ugur C. Hasar ◽  
Jose Edimar B. Oliveira

2013 ◽  
Vol 55 (7) ◽  
pp. 1537-1540 ◽  
Author(s):  
Ki-Cheol Yoon ◽  
Hyunwook Lee ◽  
Jong-Chul Lee ◽  
Ki-Byoung Kim ◽  
Seong-Cheol Kim

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Tahir Ejaz ◽  
Hamood Ur Rahman ◽  
T. Tauqeer ◽  
Adnan Masood ◽  
Tahir Zaidi

Microwave resonators are widely used for numerous applications including communication, biomedical and chemical applications, material testing, and food grading. Split-ring resonators in both planar and nonplanar forms are a simple structure which has been in use for several decades. This type of resonator is characterized with low cost, ease of fabrication, moderate quality factor, low external noise interference, high stability, and so forth. Due to these attractive features and ease in handling, nonplanar form of structure has been utilized for material characterization in 1–5 GHz range. Resonant frequency and quality factor are two important parameters for determination of material properties utilizing perturbation theory. Shield made of conducting material is utilized to enclose split-ring resonator which enhances quality factor. This work presents a novel technique to develop shield around a predesigned nonplanar split-ring resonator to yield optimized quality factor. Based on this technique and statistical analysis regression equations have also been formulated for resonant frequency and quality factor which is a major outcome of this work. These equations quantify dependence of output parameters on various factors of shield made of different materials. Such analysis is instrumental in development of devices/designs where improved/optimum result is required.


Sign in / Sign up

Export Citation Format

Share Document