Big data security in Internet of Things

Author(s):  
Yongjun Zheng ◽  
Haider Ali ◽  
Umair Ullah Tariq

2017 ◽  
pp. 491-506
Author(s):  
Padmalaya Nayak

Internet of Things (IoT) is not a futuristic intuition, it is present everywhere. It is with devices, Sensors, Clouds, Big data, and data with business. It is the combination of traditional embedded systems combined with small wireless micro sensors, control systems with automation, and others that makes a huge infrastructure. The integration of wireless communication, micro electro mechanical devices, and Internet has led to the development of new things in the Internet. It is a network of network objects that can be accessed through the Internet and every object can be identified by unique identifier. By replacing IPV4, IPV6 plays a key role and provides a huge increase of address spaces for the development of things in the Internet. The objective of IoT application is to make the things smart without the human intervention. With the increasing number of smart nodes and amount of data that generated by each node is expected to create new concerns about data privacy, data scalability, data security, data manageability and many more issues that have been discussed in this chapter.



Author(s):  
Padmalaya Nayak

Internet of Things (IoT) is not a futuristic intuition, it is present everywhere. It is with devices, Sensors, Clouds, Big data, and data with business. It is the combination of traditional embedded systems combined with small wireless micro sensors, control systems with automation, and others that makes a huge infrastructure. The integration of wireless communication, micro electro mechanical devices, and Internet has led to the development of new things in the Internet. It is a network of network objects that can be accessed through the Internet and every object can be identified by unique identifier. By replacing IPV4, IPV6 plays a key role and provides a huge increase of address spaces for the development of things in the Internet. The objective of IoT application is to make the things smart without the human intervention. With the increasing number of smart nodes and amount of data that generated by each node is expected to create new concerns about data privacy, data scalability, data security, data manageability and many more issues that have been discussed in this chapter.



Author(s):  
Bhavani Thuraisingham ◽  
Mohammad Mehedy Masud ◽  
Pallabi Parveen ◽  
Latifur Khan


Computing ◽  
2020 ◽  
Vol 102 (6) ◽  
pp. 1301-1304
Author(s):  
Victor Chang ◽  
Víctor Méndez Muñoz ◽  
Muthu Ramachandran


2020 ◽  
Vol 13 (4) ◽  
pp. 790-797
Author(s):  
Gurjit Singh Bhathal ◽  
Amardeep Singh Dhiman

Background: In current scenario of internet, large amounts of data are generated and processed. Hadoop framework is widely used to store and process big data in a highly distributed manner. It is argued that Hadoop Framework is not mature enough to deal with the current cyberattacks on the data. Objective: The main objective of the proposed work is to provide a complete security approach comprising of authorisation and authentication for the user and the Hadoop cluster nodes and to secure the data at rest as well as in transit. Methods: The proposed algorithm uses Kerberos network authentication protocol for authorisation and authentication and to validate the users and the cluster nodes. The Ciphertext-Policy Attribute- Based Encryption (CP-ABE) is used for data at rest and data in transit. User encrypts the file with their own set of attributes and stores on Hadoop Distributed File System. Only intended users can decrypt that file with matching parameters. Results: The proposed algorithm was implemented with data sets of different sizes. The data was processed with and without encryption. The results show little difference in processing time. The performance was affected in range of 0.8% to 3.1%, which includes impact of other factors also, like system configuration, the number of parallel jobs running and virtual environment. Conclusion: The solutions available for handling the big data security problems faced in Hadoop framework are inefficient or incomplete. A complete security framework is proposed for Hadoop Environment. The solution is experimentally proven to have little effect on the performance of the system for datasets of different sizes.



Sign in / Sign up

Export Citation Format

Share Document