scholarly journals Medium frequency diode rectifier unit based HVDC transmission for offshore wind farm integration

Author(s):  
Zheren Zhang ◽  
Yingjie Tang ◽  
Zheng Xu
2014 ◽  
Vol 50 (4) ◽  
pp. 2788-2797 ◽  
Author(s):  
Chenghao Li ◽  
Peng Zhan ◽  
Jinyu Wen ◽  
Meiqi Yao ◽  
Naihu Li ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2058
Author(s):  
Zheren Zhang ◽  
Yingjie Tang ◽  
Zheng Xu

Offshore wind power has great development potential, for which the key factors are reliable and economical wind farms and integration systems. This paper proposes a medium-frequency wind farm and MMC-HVDC integration system. In the proposed scheme, the operating frequency of the offshore wind farm and its power collection system is increased from the conventional 50/60 Hz rate to the medium-frequency range, i.e., 100–400 Hz; the offshore wind power is transmitted to the onshore grid via the modular multilevel converter-based high-voltage direct current transmission (MMC-HVDC). First, this paper explains the principles of the proposed scheme in terms of the system topology and control strategy aspects. Then, the impacts of increasing the offshore system operating frequency on the main parameters of the offshore station are discussed. As the frequency increases, it is shown that the actual value of the electrical equipment, such as the transformers, the arm inductors, and the SM capacitors of the rectifier MMC, can be reduced, which means smaller platforms are required for the step-up transformer station and the converter station. Then, the system operation characteristics are analyzed, with the results showing that the power losses in the system increase slightly with the increase of the offshore AC system frequency. Based on time domain simulation results from power systems computer aided design/electromagnetic transients including DC (PSCAD/EMTDC), it is noted that the dynamic behavior of the system is not significantly affected with the increase of the offshore AC system frequency in most scenarios. In this way, the technical feasibility of the proposed offshore platform miniaturization technology is proven.


2013 ◽  
Vol 1 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Peng Zhan ◽  
Chenghao Li ◽  
Jinyu Wen ◽  
Yu Hua ◽  
Meiqi Yao ◽  
...  

2018 ◽  
Vol 173 ◽  
pp. 03083
Author(s):  
Zhang Lijun ◽  
Zhong Yujun ◽  
Chen Rui ◽  
Sun Yikai ◽  
Zhang Jing ◽  
...  

When offshore wind power is transmitted to ac grid through MMC-HVDC, the current and voltage will be quite different from those in traditional ac grid during grid side fault. This paper sets up an offshore wind farm integration system via MMC-HVDC and designs control strategies for each unit in the system. The fault ride through strategy of the system is proposed and its effectiveness has been verified. Thus, the AC bus voltage on wind farm side will stay stable during AC side fault. Once the chopper resistance is set properly, the output power and current of the wind farm can basically remain unchanged, which can successfully achieve fault isolation. The simulation results based on PSCAD have verified the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document