scholarly journals High-angular resolution observations towards OMC-2 FIR 4: Dissecting an intermediate-mass protocluster

2013 ◽  
Vol 556 ◽  
pp. A62 ◽  
Author(s):  
A. López-Sepulcre ◽  
V. Taquet ◽  
Á. Sánchez-Monge ◽  
C. Ceccarelli ◽  
C. Dominik ◽  
...  
2021 ◽  
Vol 503 (1) ◽  
pp. 1490-1506
Author(s):  
Maximilian Häberle ◽  
Mattia Libralato ◽  
Andrea Bellini ◽  
Laura L Watkins ◽  
Jörg-Uwe Pott ◽  
...  

ABSTRACT We present an astrometric study of the proper motions (PMs) in the core of the globular cluster NGC 6441. The core of this cluster has a high density and observations with current instrumentation are very challenging. We combine ground-based, high-angular-resolution NACO@VLT images with Hubble Space Telescope ACS/HRC data and measure PMs with a temporal baseline of 15 yr for about 1400 stars in the centremost 15 arcsec of the cluster. We reach a PM precision of ∼30 µas yr−1 for bright, well-measured stars. Our results for the velocity dispersion are in good agreement with other studies and extend already existing analyses of the stellar kinematics of NGC 6441 to its centremost region never probed before. In the innermost arcsecond of the cluster, we measure a velocity dispersion of (19.1 ± 2.0) km s−1 for evolved stars. Because of its high mass, NGC 6441 is a promising candidate for harbouring an intermediate-mass black hole (IMBH). We combine our measurements with additional data from the literature and compute dynamical models of the cluster. We find an upper limit of $M_{\rm IMBH} \lt 1.32 \times 10^4\, \textrm{M}_\odot$ but we can neither confirm nor rule out its presence. We also refine the dynamical distance of the cluster to $12.74^{+0.16}_{-0.15}$ kpc. Although the hunt for an IMBH in NGC 6441 is not yet concluded, our results show how future observations with extremely large telescopes will benefit from the long temporal baseline offered by existing high-angular-resolution data.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 99 ◽  
Author(s):  
Eric Lagadec

During the last decades, observations, mostly with the Hubble Space Telescope, have revealed that round Planetary Nebulae were the exception rather than rule. A huge variety of features are observed, such as jets, discs, tori, showing that the ejection of material is not due to isotropic radiation pressure on a spherical shell and that more physics is involved. This shaping process certainly occur early in the evolution of these low and intermediate mass stars and must leave imprints in the evolutionary stages prior the PN phase. Thanks to news instruments on the most advanced telescopes (e.g., the VLTI, SPHERE/VLT and ALMA), high angular resolution observations are revolutionising our view of the ejection of gas and dust during the AGB and post-AGB phases. In this review I will present the newest results concerning the mass loss from AGB stars, post-AGB stars and related objects.


Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 94 ◽  
Author(s):  
Carmen Contreras ◽  
Javier Alcolea ◽  
Valentín Bujarrabal ◽  
Arancha Castro-Carrizo

We present recent Atacama Large Millimeter/submillimeter Array (ALMA)-based studies of circumstellar envelopes (CSEs) around Asymptotic Giant Branch (AGB) stars and pre-Planetary Nebulae (pPNe). In only a few years of operation, ALMA is revolutionising the field of AGB-to-PN research by providing unprecedentedly detailed information on the complex nebular architecture (at large but also on small scales down to a few ∼10 AU from the centre), dynamics and chemistry of the outflows/envelopes of low-to-intermediate mass stars in their late stages of the evolution. Here, we focus on continuum and molecular line mapping studies with high angular resolution and sensitivity of some objects that are key to understanding the complex PN-shaping process. In particular, we offer (i) a brief summary of ALMA observations of rotating disks in post-AGB objects and (ii) report on ALMA observations of OH 231.8+4.2 providing the most detailed and accurate description of the global nebular structure and kinematics of this iconic object to date.


Author(s):  
Ralph Oralor ◽  
Pamela Lloyd ◽  
Satish Kumar ◽  
W. W. Adams

Small angle electron scattering (SAES) has been used to study structural features of up to several thousand angstroms in polymers, as well as in metals. SAES may be done either in (a) long camera mode by switching off the objective lens current or in (b) selected area diffraction mode. In the first case very high camera lengths (up to 7Ø meters on JEOL 1Ø ØCX) and high angular resolution can be obtained, while in the second case smaller camera lengths (approximately up to 3.6 meters on JEOL 1Ø ØCX) and lower angular resolution is obtainable. We conducted our SAES studies on JEOL 1ØØCX which can be switched to either mode with a push button as a standard feature.


Author(s):  
J.M.K. Wiezorek ◽  
H.L. Fraser

Conventional methods of convergent beam electron diffraction (CBED) use a fully converged probe focused on the specimen in the object plane resulting in the formation of a CBED pattern in the diffraction plane. Large angle CBED (LACBED) uses a converged but defocused probe resulting in the formation of ‘shadow images’ of the illuminated sample area in the diffraction plane. Hence, low-spatial resolution image information and high-angular resolution diffraction information are superimposed in LACBED patterns which enables the simultaneous observation of crystal defects and their effect on the diffraction pattern. In recent years LACBED has been used successfully for the investigation of a variety of crystal defects, such as stacking faults, interfaces and dislocations. In this paper the contrast from coherent precipitates and decorated dislocations in LACBED patterns has been investigated. Computer simulated LACBED contrast from decorated dislocations and coherent precipitates is compared with experimental observations.


2015 ◽  
Vol 71-72 ◽  
pp. 187-188
Author(s):  
A. Gallenne ◽  
A. Mérand ◽  
P. Kervella

Sign in / Sign up

Export Citation Format

Share Document