scholarly journals AGBs, Post-AGBs and the Shaping of Planetary Nebulae

Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 99 ◽  
Author(s):  
Eric Lagadec

During the last decades, observations, mostly with the Hubble Space Telescope, have revealed that round Planetary Nebulae were the exception rather than rule. A huge variety of features are observed, such as jets, discs, tori, showing that the ejection of material is not due to isotropic radiation pressure on a spherical shell and that more physics is involved. This shaping process certainly occur early in the evolution of these low and intermediate mass stars and must leave imprints in the evolutionary stages prior the PN phase. Thanks to news instruments on the most advanced telescopes (e.g., the VLTI, SPHERE/VLT and ALMA), high angular resolution observations are revolutionising our view of the ejection of gas and dust during the AGB and post-AGB phases. In this review I will present the newest results concerning the mass loss from AGB stars, post-AGB stars and related objects.

Galaxies ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 94 ◽  
Author(s):  
Carmen Contreras ◽  
Javier Alcolea ◽  
Valentín Bujarrabal ◽  
Arancha Castro-Carrizo

We present recent Atacama Large Millimeter/submillimeter Array (ALMA)-based studies of circumstellar envelopes (CSEs) around Asymptotic Giant Branch (AGB) stars and pre-Planetary Nebulae (pPNe). In only a few years of operation, ALMA is revolutionising the field of AGB-to-PN research by providing unprecedentedly detailed information on the complex nebular architecture (at large but also on small scales down to a few ∼10 AU from the centre), dynamics and chemistry of the outflows/envelopes of low-to-intermediate mass stars in their late stages of the evolution. Here, we focus on continuum and molecular line mapping studies with high angular resolution and sensitivity of some objects that are key to understanding the complex PN-shaping process. In particular, we offer (i) a brief summary of ALMA observations of rotating disks in post-AGB objects and (ii) report on ALMA observations of OH 231.8+4.2 providing the most detailed and accurate description of the global nebular structure and kinematics of this iconic object to date.


2021 ◽  
Vol 503 (1) ◽  
pp. 1490-1506
Author(s):  
Maximilian Häberle ◽  
Mattia Libralato ◽  
Andrea Bellini ◽  
Laura L Watkins ◽  
Jörg-Uwe Pott ◽  
...  

ABSTRACT We present an astrometric study of the proper motions (PMs) in the core of the globular cluster NGC 6441. The core of this cluster has a high density and observations with current instrumentation are very challenging. We combine ground-based, high-angular-resolution NACO@VLT images with Hubble Space Telescope ACS/HRC data and measure PMs with a temporal baseline of 15 yr for about 1400 stars in the centremost 15 arcsec of the cluster. We reach a PM precision of ∼30 µas yr−1 for bright, well-measured stars. Our results for the velocity dispersion are in good agreement with other studies and extend already existing analyses of the stellar kinematics of NGC 6441 to its centremost region never probed before. In the innermost arcsecond of the cluster, we measure a velocity dispersion of (19.1 ± 2.0) km s−1 for evolved stars. Because of its high mass, NGC 6441 is a promising candidate for harbouring an intermediate-mass black hole (IMBH). We combine our measurements with additional data from the literature and compute dynamical models of the cluster. We find an upper limit of $M_{\rm IMBH} \lt 1.32 \times 10^4\, \textrm{M}_\odot$ but we can neither confirm nor rule out its presence. We also refine the dynamical distance of the cluster to $12.74^{+0.16}_{-0.15}$ kpc. Although the hunt for an IMBH in NGC 6441 is not yet concluded, our results show how future observations with extremely large telescopes will benefit from the long temporal baseline offered by existing high-angular-resolution data.


1993 ◽  
Vol 155 ◽  
pp. 340-340 ◽  
Author(s):  
R.E.S. Clegg ◽  
N. A. Walton ◽  
M.J. Barlow

It is not really known how low and intermediate mass stars eject mass to form PNs. We present preliminary results from a programme of near–IR imaging, in which we study a sequence of objects, from extreme AGB stars through proto–planetaries to young, compact PNs. We aim to study the sequence of morphologies, to see where the onset of bipolar shaping occurs, and to use the IR molecular hydrogen lines to map neutral regions around ionized nebulae.


Galaxies ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 51
Author(s):  
Foteini Lykou ◽  
Albert Zijlstra ◽  
Quentin A. Parker

We present preliminary results of our study of a small sample of planetary nebulae in the Galactic Bulge for which high-angular resolution Hubble Space Telescope imaging is available. From this and from archival spectroscopy, we were able to calculate temperatures and luminosities for their central stars. These were then correlated to up-to-date evolutionary tracks found in the literature to help us estimate stellar masses and therefore ages for the central stars. Our current analysis indicates that our sample appears to represent a somewhat mixed population of planetary nebulae central stars, while at least one of the nebulae might have been formed by a more massive progenitor (i.e., M ZAMS ∼ 4 M ⊙ ).


2016 ◽  
Vol 12 (S323) ◽  
pp. 136-140
Author(s):  
Laurence Sabin ◽  
Qizhou Zhang ◽  
Gregg A. Wade ◽  
Agnès Lèbre ◽  
Roberto Vázquez

AbstractMagnetic fields are likely to be an efficient mechanism which can affect evolved intermediate mass stars (i.e. post-AGB stars and planetary nebulae) in different ways such as via the shaping of their envelope. However, observational probes for the presence of those fields are still scarce. I will present a summary of the works, including those from our group, on the detection and measurement of magnetic fields in various evolved objects.


2016 ◽  
Vol 12 (S323) ◽  
pp. 179-183
Author(s):  
Marcelo M. Miller Bertolami

AbstractThe post-asymptotic giant branch (AGB) phase is arguably one of the least understood phases of the evolution of low- and intermediate- mass stars. The recent post-AGB evolutionary sequences computed by Miller Bertolami (2016) are at least three to ten times faster than those previously published by Vassiliadis & Wood (1994) and Blöcker (1995) which have been used in a large number of studies. This is true for the whole mass and metallicity range. The new models are also ~0.1–0.3 dex brighter than the previous models with similar remnant masses. In this short article we comment on the main reasons behind these differences, and discuss possible implications for other studies of post-AGB stars or planetary nebulae.


1997 ◽  
Vol 180 ◽  
pp. 257-257
Author(s):  
Paola Marigo

A semi-analytical model has been constructed to calculate the TP-AGB evolution of low-and intermediate-mass stars (Marigo et al. 1996), starting from the first thermal pulse until the complete ejection of the envelope by stellar winds. We estimate the changes in the chemical composition of the envelope due to different processes: (i) the intershell nucleosynthesis and convective dredge-up; (ii) envelope burning in the most massive AGB stars (M ≥ 3–4M⊙); (iii) mass loss by stellar winds.


2018 ◽  
Vol 14 (S343) ◽  
pp. 141-149
Author(s):  
Eric Lagadec

AbstractMass loss of AGB stars is a key process for the late stages of evolution of low and intermediate mass stars and the chemical enrichment of galaxies. It is not fully understood yet, as it is the result of a complex combination of pulsation, convection, chemistry, shocks and dust formation.In this review I present what high angular resolution observations can teach us about this mass-loss process. Instruments such as SPHERE/VLT, Gravity and AMBER at the VLTI, and ALMA give us the possibility to map AGB stars from the optical to millimetre wavelengths with resolutions down to 1 milliarcsec. Moving from the surface of the star outwards, I present how high angular resolution observations can now produce images of the surface of the closest AGB stars and study convective motion at their surfaces, map their extended molecular atmospheres and the seeds for dust. The dust formation zone can also be mapped and its dust content characterized with mid-infrared interferometry, while ALMA can map the gas and its kinematics. I will conclude by showing how high angular resolution can help us study the impact of a companion on mass loss.


2018 ◽  
Vol 14 (S343) ◽  
pp. 456-457
Author(s):  
Foteini Lykou ◽  
Josef Hron ◽  
Daniela Klotz

AbstractRecent advances in high-angular resolution instruments (VLT and VLTI, ALMA) have enabled us to delve deep into the circumstellar envelopes of AGB stars from the optical to the sub-mm wavelengths, thus allowing us to study in detail the gas and dust formation zones (e.g., their geometry, chemistry and kinematics). This work focuses on four (4) C-rich AGB stars observed with a high-angular resolution technique in the near-infrared: a multi-wavelength tomographic study of the dusty layers of the circumstellar envelopes of these C-rich stars, i.e. the variations in the morphology and temperature distribution.


2020 ◽  
Vol 494 (2) ◽  
pp. 2312-2326 ◽  
Author(s):  
Cristiana Spingola ◽  
Anna Barnacka

ABSTRACT We present a multiwavelength analysis of two highly magnified strong gravitationally lensed galaxies, CLASS B0712+472 and CLASS B1608+656, at redshifts 1.34 and 1.394, respectively, using new VLBI (very long baseline interferometry) and archival Hubble Space Telescope observations. We reconstruct the positions of the radio and optical emissions with their uncertainties using Monte Carlo sampling. We find that in CLASS B0712+472 the optical and radio emissions are co-spatial within 2 ± 5 mas (17 ± 42 pc at redshift of 1.34). But, in CLASS B1608+656, we reconstruct an optical–radio offset of 25 ± 16 mas (214 ± 137 pc at redshift of 1.394), among the smallest offsets measured for an AGN (active galactic nucleus) at such high redshift. The spectral features indicate that CLASS B1608+656 is a post-merger galaxy, which, in combination with the optical–VLBI offset reported here, makes CLASS B1608+656 a promising candidate for a high- z offset–AGN. Furthermore, the milliarcsecond angular resolution of the VLBI observations combined with the precise lens models allow us to spatially locate the radio emission at 0.05 mas precision (0.4 pc) in CLASS B0712+472, and 0.009 mas precision (0.08 pc) in CLASS B1608+656. The search for optical–radio offsets in high redshift galaxies will be eased by the upcoming synoptic all-sky surveys, including Extremely Large Telescope and Square Kilometre Array, which are expected to find ∼105 strongly lensed galaxies, opening an era of large strong lensing samples observed at high angular resolution.


Sign in / Sign up

Export Citation Format

Share Document