scholarly journals Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

2018 ◽  
Vol 609 ◽  
pp. A51 ◽  
Author(s):  
J. Warnecke ◽  
M. Rheinhardt ◽  
S. Tuomisto ◽  
P. J. Käpylä ◽  
M. J. Käpylä ◽  
...  

Aims.We investigate dynamo action in global compressible solar-like convective dynamos in the framework of mean-field theory.Methods.We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives a large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally (φ) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which six are related to theαtensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and is applied here for the first time to fully compressible simulations of solar-like dynamos.Results.We find that theφφ-component of theαtensor does not follow the profile expected from that of kinetic helicity. The turbulent pumping velocities significantly alter the effective mean flows acting on the magnetic field and therefore challenge the flux transport dynamo concept. All coefficients are significantly affected by dynamically important magnetic fields. Quenching as well as enhancement are being observed. This leads to a modulation of the coefficients with the activity cycle. The temporal variations are found to be comparable to the time-averaged values and seem to be responsible for a nonlinear feedback on the magnetic field generation. Furthermore, we quantify the validity of the Parker-Yoshimura rule for the equatorward propagation of the mean magnetic field in the present case.

2013 ◽  
Vol 717 ◽  
pp. 395-416 ◽  
Author(s):  
D. W. Hughes ◽  
M. R. E. Proctor

AbstractRecent numerical simulations of dynamo action resulting from rotating convection have revealed some serious problems in applying the standard picture of mean field electrodynamics at high values of the magnetic Reynolds number, and have thereby underlined the difficulties in large-scale magnetic field generation in this regime. Here we consider kinematic dynamo processes in a rotating convective layer of Boussinesq fluid with the additional influence of a large-scale horizontal velocity shear. Incorporating the shear flow enhances the dynamo growth rate and also leads to the generation of significant magnetic fields on large scales. By the technique of spectral filtering, we analyse the modes in the velocity that are principally responsible for dynamo action, and show that the magnetic field resulting from the full flow relies crucially on a range of scales in the velocity field. Filtering the flow to provide a true separation of scales between the shear and the convective flow also leads to dynamo action; however, the magnetic field in this case has a very different structure from that generated by the full velocity field. We also show that the nature of the dynamo action is broadly similar irrespective of whether the flow in the absence of shear can support dynamo action.


2020 ◽  
Vol 642 ◽  
pp. A66
Author(s):  
J. Warnecke ◽  
M. J. Käpylä

Context. For moderate and slow rotation, the magnetic activity of solar-like stars is observed to strongly depend on rotation, while for rapid rotation, only a very weak or no dependency is detected. These observations do not yet have a solid explanation in terms of dynamo theory. Aims. We aim to find such an explanation by numerically investigating the rotational dependency of dynamo drivers in solar-like stars, that is, stars that have a convective envelope of similar thickness to that of the Sun. Methods. We ran semi-global convection simulations of stars with rotation rates from 0 to 30 times the solar value, corresponding to Coriolis numbers, Co, of 0 to 110. We measured the turbulent transport coefficients contributing to the magnetic field evolution with the help of the test-field method, and compared with the dynamo effect arising from the differential rotation that is self-consistently generated in the models. Results. The trace of the α tensor increases for moderate rotation rates with Co0.5 and levels off for rapid rotation. This behavior is in agreement with the kinetic α based on the kinetic helicity, if one takes into account the decrease of the convective scale with increasing rotation. The α tensor becomes highly anisotropic for Co ≳ 1. Furthermore, αrr dominates for moderate rotation (1 <  Co <  10), and αϕϕ for rapid rotation (Co ≳ 10). The effective meridional flow, taking into account the turbulent pumping effects, is markedly different from the actual meridional circulation profile. Hence, the turbulent pumping effect is dominating the meridional transport of the magnetic field. Taking all dynamo effects into account, we find three distinct regimes. For slow rotation, the α and Rädler effects are dominating in the presence of anti-solar differential rotation. For moderate rotation, α and Ω effects are dominant, indicative of αΩ or α2Ω dynamos in operation, producing equatorward-migrating dynamo waves with a qualitatively solar-like rotation profile. For rapid rotation, an α2 mechanism with an influence from the Rädler effect appears to be the most probable driver of the dynamo. Conclusions. Our study reveals the presence of a large variety of dynamo effects beyond the classical αΩ mechanism, which need to be investigated further to fully understand the dynamos of solar-like stars. The highly anisotropic α tensor might be the primary reason for the change of axisymmetric to non-axisymmetric dynamo solutions in the moderate rotation regime.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2018 ◽  
Vol 612 ◽  
pp. A97 ◽  
Author(s):  
P. J. Bushby ◽  
P. J. Käpylä ◽  
Y. Masada ◽  
A. Brandenburg ◽  
B. Favier ◽  
...  

Context.Convectively driven flows play a crucial role in the dynamo processes that are responsible for producing magnetic activity in stars and planets. It is still not fully understood why many astrophysical magnetic fields have a significant large-scale component.Aims.Our aim is to investigate the dynamo properties of compressible convection in a rapidly rotating Cartesian domain, focusing upon a parameter regime in which the underlying hydrodynamic flow is known to be unstable to a large-scale vortex instability.Methods.The governing equations of three-dimensional non-linear magnetohydrodynamics (MHD) are solved numerically. Different numerical schemes are compared and we propose a possible benchmark case for other similar codes.Results.In keeping with previous related studies, we find that convection in this parameter regime can drive a large-scale dynamo. The components of the mean horizontal magnetic field oscillate, leading to a continuous overall rotation of the mean field. Whilst the large-scale vortex instability dominates the early evolution of the system, the large-scale vortex is suppressed by the magnetic field and makes a negligible contribution to the mean electromotive force that is responsible for driving the large-scale dynamo. The cycle period of the dynamo is comparable to the ohmic decay time, with longer cycles for dynamos in convective systems that are closer to onset. In these particular simulations, large-scale dynamo action is found only when vertical magnetic field boundary conditions are adopted at the upper and lower boundaries. Strongly modulated large-scale dynamos are found at higher Rayleigh numbers, with periods of reduced activity (grand minima-like events) occurring during transient phases in which the large-scale vortex temporarily re-establishes itself, before being suppressed again by the magnetic field.


2002 ◽  
Vol 456 ◽  
pp. 219-237 ◽  
Author(s):  
FAUSTO CATTANEO ◽  
DAVID W. HUGHES ◽  
JEAN-CLAUDE THELEN

By considering an idealized model of helically forced flow in an extended domain that allows scale separation, we have investigated the interaction between dynamo action on different spatial scales. The evolution of the magnetic field is studied numerically, from an initial state of weak magnetization, through the kinematic and into the dynamic regime. We show how the choice of initial conditions is a crucial factor in determining the structure of the magnetic field at subsequent times. For a simulation with initial conditions chosen to favour the growth of the small-scale field, the evolution of the large-scale magnetic field can be described in terms of the α-effect of mean field magnetohydrodynamics. We have investigated this feature further by a series of related numerical simulations in smaller domains. Of particular significance is that the results are consistent with the existence of a nonlinearly driven α-effect that becomes saturated at very small amplitudes of the mean magnetic field.


2019 ◽  
Vol 488 (4) ◽  
pp. 5065-5074 ◽  
Author(s):  
C C Evirgen ◽  
F A Gent ◽  
A Shukurov ◽  
A Fletcher ◽  
P J Bushby

ABSTRACT We explore the effect of magnetic fields on the vertical distribution and multiphase structure of the supernova-driven interstellar medium in simulations that admit dynamo action. As the magnetic field is amplified to become dynamically significant, gas becomes cooler and its distribution in the disc becomes more homogeneous. We attribute this to magnetic quenching of vertical velocity, which leads to a decrease in the cooling length of hot gas. A non-monotonic vertical distribution of the large-scale magnetic field strength, with the maximum at |z| ≈ 300 pc causes a downward pressure gradient below the maximum which acts against outflow driven by SN explosions, while it provides pressure support above the maximum.


2019 ◽  
Vol 491 (3) ◽  
pp. 3870-3883 ◽  
Author(s):  
Abhijit B Bendre ◽  
Kandaswamy Subramanian ◽  
Detlef Elstner ◽  
Oliver Gressel

ABSTRACT Coherent magnetic fields in disc galaxies are thought to be generated by a large-scale (or mean-field) dynamo operating in their interstellar medium. A key driver of mean magnetic field growth is the turbulent electromotive force (EMF), which represents the influence of correlated small-scale (or fluctuating) velocity and magnetic fields on the mean field. The EMF is usually expressed as a linear expansion in the mean magnetic field and its derivatives, with the dynamo tensors as expansion coefficients. Here, we adopt the singular value decomposition (SVD) method to directly measure these turbulent transport coefficients in a simulation of the turbulent interstellar medium that realizes a large-scale dynamo. Specifically, the SVD is used to least-square fit the time series data of the EMF with that of the mean field and its derivatives, to determine these coefficients. We demonstrate that the spatial profiles of the EMF reconstructed from the SVD coefficients match well with that taken directly from the simulation. Also, as a direct test, we use the coefficients to simulate a 1D mean-field dynamo model and find an overall similarity in the evolution of the mean magnetic field between the dynamo model and the direct simulation. We also compare the results with those which arise using simple regression and the ones obtained previously using the test-field method, to find reasonable qualitative agreement. Overall, the SVD method provides an effective post-processing tool to determine turbulent transport coefficients from simulations.


2013 ◽  
Vol 723 ◽  
pp. 529-555 ◽  
Author(s):  
B. Favier ◽  
P. J. Bushby

AbstractMean-field dynamo theory suggests that turbulent convection in a rotating layer of electrically conducting fluid produces a significant $\alpha $-effect, which is one of the key ingredients in any mean-field dynamo model. Provided that this $\alpha $-effect operates more efficiently than (turbulent) magnetic diffusion, such a system should be capable of sustaining a large-scale dynamo. However, in the Boussinesq model that was considered by Cattaneo & Hughes (J. Fluid Mech., vol. 553, 2006, pp. 401–418) the dynamo produced small-scale, intermittent magnetic fields with no significant large-scale component. In this paper, we consider the compressible analogue of the rotating convective layer that was considered by Cattaneo & Hughes (2006). Varying the horizontal scale of the computational domain, we investigate the dependence of the dynamo upon the rotation rate. Our simulations indicate that these turbulent compressible flows can drive a small-scale dynamo but, even when the layer is rotating very rapidly (with a mid-layer Taylor number of $Ta= 1{0}^{8} $), we find no evidence for the generation of a significant large-scale component of the magnetic field on a dynamical time scale. Like Cattaneo & Hughes (2006), we measure a negligible (time-averaged) $\alpha $-effect when a uniform horizontal magnetic field is imposed across the computational domain. Although the total horizontal magnetic flux is a conserved quantity in these simulations, the (depth-dependent) horizontally averaged magnetic field always exhibits strong fluctuations. If these fluctuations are artificially suppressed within the code, we measure a significant mean electromotive force that is comparable to that found in related calculations in which the $\alpha $-effect is measured using the test-field method, even though we observe no large-scale dynamo action.


2020 ◽  
Vol 500 (3) ◽  
pp. 3527-3535
Author(s):  
Abhijit B Bendre ◽  
Detlef Elstner ◽  
Oliver Gressel

ABSTRACT Large-scale coherent magnetic fields observed in the nearby galaxies are thought to originate by a mean-field dynamo. This is governed via the turbulent electromotive force (EMF, $\overline{{\boldsymbol {\cal E}} {}}$) generated by the helical turbulence driven by supernova (SN) explosions in the differentially rotating interstellar medium (ISM). In this paper, we aim to investigate the possibility of dynamo action by the virtue of buoyancy due to a cosmic ray (CR) component injected through the SN explosions. We do this by analysing the magnetohydrodynamic simulations of local shearing box of ISM in which the turbulence is driven via random SN explosions and the energy of the explosion is distributed in the CR and/or thermal energy components. We use the magnetic field aligned diffusion prescription for the propagation of CR. We compare the evolution of magnetic fields in the models with the CR component to our previous models that did not involve the CR. We demonstrate that the inclusion of CR component enhances the growth of dynamo slightly. We further compute the underlying dynamo coefficients using the test-field method and argue that the entire evolution of the large-scale mean magnetic field can be reproduced with an α − Ω dynamo model. We also show that the inclusion of CR component leads to an unbalanced turbulent pumping between magnetic field components and additional dynamo action by the Rädler effect.


Galaxies ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 54 ◽  
Author(s):  
Marita Krause

Radio continuum and polarization observations reveal best the magnetic field structure and strength in nearby spiral galaxies. They show a similar magnetic field pattern, which is of spiral shape along the disk plane and X-shaped in the halo, sometimes accompanied by strong vertical fields above and below the central region of the disk. The strength of the total halo field is comparable to that of the disk. The small- and large-scale dynamo action is discussed to explain the observations with special emphasis on the rôle of star formation on the α − Ω dynamo and the magnetic field strength and structure in the disk and halo. Recently, with RM-synthesis of the CHANG-ES observations, we obtained the first observational evidence for the existence of regular magnetic fields in the halo. The analysis of the radio scale heights indicate escape-dominated radio halos with convective cosmic ray propagation for many galaxies. These galactic winds may be essential for an effective dynamo action and may transport large-scale magnetic field from the disk into the halo.


Sign in / Sign up

Export Citation Format

Share Document