scholarly journals The AMBRE project: a study of Li evolution in the Galactic thin and thick discs

2017 ◽  
Vol 606 ◽  
pp. A132 ◽  
Author(s):  
N. Prantzos ◽  
P. de Laverny ◽  
G. Guiglion ◽  
A. Recio-Blanco ◽  
C. C. Worley

Context. Recent observations suggest a double-branch behaviour of Li/H versus metallicity in the local thick and thin discs. This is reminiscent of the corresponding O/Fe versus Fe/H behaviour, which has been explained as resulting from radial migration in the Milky Way disc. Aims. We study here the role of radial migration in shaping these observations. Methods. We use a semi-analytical model of disc evolution with updated chemical yields and parameterised radial migration. We explore the cases of long-lived (red giants of a few Gy lifetime) and shorter-lived (asymptotic giant branch stars of several 108 yr) stellar sources of Li, as well as those of low and high primordial Li. We show that both factors play a key role in the overall Li evolution. Results. We find that the observed two-branch Li behaviour is only directly obtained in the case of long-lived stellar Li sources and low primordial Li. In all other cases, the data imply systematic Li depletion in stellar envelopes, thus no simple picture of the Li evolution can be obtained. This concerns also the reported Li/H decrease at supersolar metallicities.

2009 ◽  
Vol 5 (S268) ◽  
pp. 301-309
Author(s):  
Verne V. Smith

AbstractConnections between observations of the lithium abundance in various types of red giants and stellar evolution are discussed here. The emphasis is on three main topics; 1) the depletion of Li as stars ascend the red giant branch for the first time, 2) the synthesis of 7Li in luminous and massive asymptotic giant branch stars via the mechanism of hot-bottom burning, and 3) the possible multiple sources of excess Li abundances found in a tiny fraction of various types of G and K giants.


2012 ◽  
Vol 8 (S287) ◽  
pp. 245-249
Author(s):  
W. Cotton ◽  
G. Perrin ◽  
R. Millan-Gabet ◽  
O. Delaa ◽  
B. Mennesson

AbstractAsymptotic Giant Branch Stars (AGB) are evolved, mass losing red giants with tenuous molecular envelopes which have been the subject of much recent study using infrared and radio interferometers. In oxygen rich stars, radio SiO masers form in the outer regions of the molecular envelopes and are powerful diagnostics of the extent of these envelopes. Spectroscopically resolved infrared interferometry helps constrain the extent of various species in the molecular layer. We made VLBA 7 mm SiO maser, Keck Interferometer near IR and VLTI/MIDI mid IR high resolution observations of the stars U Ari, W Cnc, RX Tau, RT Aql, S Ser and V Mon. This paper presents evidence that the SiO is depleted from the gas phase and speculate that it is frozen onto Al2O3 grains and that radiation pressure on these grains help drive the outflow.


2018 ◽  
Vol 14 (S343) ◽  
pp. 510-511
Author(s):  
G. Tautvaišienė ◽  
C. Viscasillas Vázquez ◽  
V. Bagdonas ◽  
R. Smiljanic ◽  
A. Drazdauskas ◽  
...  

AbstractAsymptotic giant branch stars play an important role in enriching galaxies by s-process elements. Recent studies have shown that their role in producing s-process elements in the Galactic disc was underestimated and should be reconsidered. Based on high-resolution spectra we have determined abundances of neutron-capture elements in a sample of 310 stars located in the field and open clusters and investigated elemental enrichment patterns according to their age and mean galactocentric distances.


Sign in / Sign up

Export Citation Format

Share Document