scholarly journals Energy distribution of relativistic electrons in the kiloparsec scale jet of M 87 with Chandra

2018 ◽  
Vol 612 ◽  
pp. A106 ◽  
Author(s):  
Xiao-Na Sun ◽  
Rui-Zhi Yang ◽  
Frank M. Rieger ◽  
Ruo-Yu Liu ◽  
Felix Aharonian

The X-ray emission from the jets in active galactic nuclei (AGN) carries important information on the distributions of relativistic electrons and magnetic fields on large scales. We reanalysed archival Chandra observations on the jet of M 87 from 2000 to 2016 with a total exposure of 1460 kiloseconds to explore the X-ray emission characteristics along the jet. We investigated the variability behaviours of the nucleus and the inner jet component HST-1, and confirm indications for day-scale X-ray variability in the nucleus contemporaneous to the 2010 high TeV γ-ray state. HST-1 shows a general decline in X-ray flux over the last few years consistent with its synchrotron interpretation. We extracted the X-ray spectra for the nucleus and all knots in the jet, showing that they are compatible with a single power law within the X-ray band. There are indications that the resultant X-ray photon index exhibit a trend, with slight but significant index variations ranging from ≃ 2.2 (e.g. in knot D) to ≃ 2.4−2.6 (in the outer knots F, A, and B). When viewed in a multiwavelength context, a more complex situation can be seen. Fitting the radio to X-ray spectral energy distributions (SEDs) assuming a synchrotron origin, we show that a broken power-law electron spectrum with break energy Eb around 1 (300 μG/B)1/2 TeV allows a satisfactory description of the multiband SEDs for most of the knots. However, in the case of knots B, C, and D we find indications that an additional high-energy component is needed to adequately reproduce the broad-band SEDs. We discuss the implications and suggest that a stratified jet model may account for the differences.

Universe ◽  
2020 ◽  
Vol 6 (11) ◽  
pp. 219
Author(s):  
Elena Fedorova ◽  
B.I. Hnatyk ◽  
V.I. Zhdanov ◽  
A. Del Popolo

3C111 is BLRG with signatures of both FSRQ and Sy1 in X-ray spectrum. The significant X-ray observational dataset was collected for it by INTEGRAL, XMM-Newton, SWIFT, Suzaku and others. The overall X-ray spectrum of 3C 111 shows signs of a peculiarity with the large value of the high-energy cut-off typical rather for RQ AGN, probably due to the jet contamination. Separating the jet counterpart in the X-ray spectrum of 3C 111 from the primary nuclear counterpart can answer the question is this nucleus truly peculiar or this is a fake “peculiarity” due to a significant jet contribution. In view of this question, our aim is to estimate separately the accretion disk/corona and non-thermal jet emission in the 3C 111 X-ray spectra within different observational periods. To separate the disk/corona and jet contributions in total continuum, we use the idea that radio and X-ray spectra of jet emission can be described by a simple power-law model with the same photon index. This additional information allows us to derive rather accurate values of these contributions. In order to test these results, we also consider relations between the nuclear continuum and the line emission.


2020 ◽  
Vol 496 (2) ◽  
pp. 1295-1306
Author(s):  
Alicja Wierzcholska ◽  
Stefan J Wagner

ABSTRACT The X-ray spectrum of extreme high-energy peaked BL Lac-type blazars is located in the synchrotron branch of the broad-band spectral energy distribution (SED), at energies below the peak. A joint fit of the extrapolated X-ray spectra together with a host galaxy template allows characterizing the synchrotron branch in the SED. The X-ray spectrum is usually characterized either with a pure or a curved power-law model. In the latter case, however, it is hard to distinguish an intrinsic curvature from excess absorption. In this paper, we focus on five well-observed blazars: 1ES 0229+200, PKS 0548−322, RX J 1136+6737, 1ES 1741+196, and 1ES 2344+514. We constrain the infrared to X-ray emission of these five blazars using a model that is characterized by the host galaxy, spectral curvature, absorption, and ultraviolet (UV) excess to separate these spectral features. In the case of four sources, namely 1ES 0229+200, PKS 0548−322, 1ES 1741+196, and 1ES 2344+514, the spectral fit with the atomic neutral hydrogen from the Leiden Argentina Bonn Survey results in a significant UV excess present in the broad-band SED. Such excess can be interpreted as an additional component, for example, a blue bump. However, in order to describe spectra of these blazars without such excess, additional absorption to the atomic neutral hydrogen from the Leiden Argentina Bonn Survey is needed.


2020 ◽  
Vol 496 (4) ◽  
pp. 5518-5527
Author(s):  
N Sahakyan

ABSTRACT The origin of the multiwavelength emission from the high-synchrotron-peaked BL Lac 1ES 1218+304 is studied using the data from SwiftUVOT/XRT, NuSTAR, and Fermi-LAT. A detailed temporal and spectral analysis of the data observed during 2008–2020 in the  γ-ray (>100 MeV), X-ray (0.3–70 keV), and optical/UV bands is performed. The γ-ray spectrum is hard with a photon index of 1.71 ± 0.02 above 100 MeV. The SwiftUVOT/XRT data show a flux increase in the UV/optical and X-ray bands; the highest 0.3–3 keV X-ray flux was (1.13 ± 0.02) × 10−10 erg cm−2 s−1. In the 0.3–10 keV range, the averaged X-ray photon index is >2.0 which softens to 2.56 ± 0.028 in the 3–50 keV band. However, in some periods, the X-ray photon index became extremely hard (<1.8), indicating that the peak of the synchrotron component was above 1 keV, and so 1ES 1218+304 behaved like an extreme synchrotron BL Lac. The hardest X-ray photon index of 1ES 1218+304 was 1.60 ± 0.05 on MJD 58489. The time-averaged multiwavelength spectral energy distribution is modelled within a one-zone synchrotron self-Compton leptonic model using a broken power law and power law with an exponential cutoff electron energy distributions. The data are well explained when the electron energy distribution is $E_{\rm e}^{-2.1}$ extending up to γbr/cut ≃ (1.7 − 4.3) × 105, and the magnetic field is weak (B ∼ 1.5 × 10−2 G). By solving the kinetic equation for electron evolution in the emitting region, the obtained electron energy distributions are discussed considering particle injection, cooling, and escape.


2020 ◽  
Vol 498 (2) ◽  
pp. 1911-1919
Author(s):  
Fang-Wu Lu ◽  
Quan-Gui Gao ◽  
Li Zhang

ABSTRACT 3C 58 is a pulsar wind nebula (PWN) that shows an interesting energy-dependent nebula extent and spatial variations of the photon index and surface brightness in the X-ray band. These observations provide useful information with which to study the spatially dependent radiative cooling of electrons and the energy-dependent transport mechanisms within the nebula. In this paper, the energy-dependent nebula extent and spatially resolved spectra of this PWN are investigated in the framework of a spatially dependent particle transport model. The observations of the nebula, including the photon spectral energy distribution, spatial variations of the X-ray spectrum, and measurements of the nebula extent, can be naturally explained in this model. Our results show that the energy-dependent nebula extent favours an advection–diffusion scenario with advection-dominated transport, and the variations of the nebula extent with energy in the X-ray band can be attributed to the cooling losses of high-energy electrons affected by synchrotron burn-off. Particle diffusion plays an important role in modifying the spatial variations of the photon index and surface brightness in the X-ray band. The radial extents of the nebula at radio, GeV and TeV energies are predicted by the model, indicating that the nebula extent of 3C 58 varies with energy in these bands. The analyses show that the dependence of the adiabatic cooling rate and synchrotron radiation on the spectral index of injected particles is important for changing the nebula extent at different energies.


2019 ◽  
Vol 491 (1) ◽  
pp. 29-38 ◽  
Author(s):  
N Osorio-Clavijo ◽  
O González-Martín ◽  
I E Papadakis ◽  
J Masegosa ◽  
L Hernández-García

ABSTRACT In this paper, we present a multi-epoch analysis of NGC 1052, a prototypical low-luminisity active galactic nucleus, using XMM–Newton, Suzaku and NuSTAR observations taken from 2001 to 2017. This is the first time that results from NuSTAR observations have been reported for NGC 1052. Regarding technical aspects, we found a wavelength-dependent calibration issue between simultaneous XMM–Newton and NuSTAR spectra, characterized by a change in the photon index of $\rm { \Gamma _{NuSTAR}- \Gamma _{XMM-Newton}=0.17\pm 0.04}$. We use ancillary Chandra data to decontaminate the nuclear spectrum from circumnuclear contributors. We find that two baseline models can fit the broad (0.5–50 keV) X-ray spectrum of the source. One consists of a power-law-like continuum that is absorbed by a uniform absorber, and is reflected by neutral material, and a separate power-law component in the soft band. The second model consists of a clumpy absorber. The reflection component is still present, but not the soft-band power law. Instead, absorption by a warm absorber is necessary to fit the spectra. This is the first time that a reflection component has been established in this object, thanks to high-energy data from NuSTAR. This component is constant in flux and shape, supporting the idea that it is produced away from the central source (probably in the torus). We find flux, spectral slope and absorption variations on time-scales of months to years. We also find that a patchy absorber can explain the behaviour of this source better, as it is ∼200 times more likely than the uniform absorber and yields smaller intrinsic variations.


1994 ◽  
Vol 159 ◽  
pp. 317-317
Author(s):  
M. Bałucińska-Church ◽  
L. Piro ◽  
H. Fink ◽  
F. Fiore ◽  
M. Matsuoka ◽  
...  

SummaryWe report results of an international UV – X-ray campaign in 1990–1992 involving the IUE, Rosat and Ginga satellites to observe E1615+061, a Seyfert 1 galaxy with peculiar spectral and intensity behaviour over the last 20 years. The source has been found to be stable in its medium state during the observations. The Ginga (1–20 keV) spectrum of E1615+061 is adequately represented by a simple power law with a photon index α = 1.8 ± 0.1. However, α ∼ 2, as expected for the intrinsic power law component in a reflection model, cannot be ruled out statistically. The Rosat PSPC (0.1–2 keV) spectra collected during the All Sky Survey and the AO-1 phase can be well-described by a simple power law (α = 2.2 ± 0.1) with cold absorber (NH = 3.5 ± 0.3 · 10λ20 H/cmλ2). Both the photon index being significantly different than that obtained from the Ginga spectrum and the column density being smaller than the galactic column (NH ∼ 4.2 · 10λ20 H/cmλ2) give an indication of a soft excess over and above the hard component seen in the Ginga spectrum. E1615+061 has been observed with IUE in 1990 and in 1992. The source was stable and the colour excess E(B-V) derived from the data = 0.1 is in good agreement with that expected from the galactic absorption.To parameterise the soft excess we fitted the Rosat data with a two-component model consisting of a power law, and a blackbody or thermal bremsstrahlung, with a single galactic absorption term. The column density and the slope of the power law were kept constant. The blackbody temperature was 80 ± 6 eV and 63 ± 12 eV for photon index equal to 1.8 and 2.0, respectively, whereas the bremsstrahlung temperature was 220 ± 40 eV and 115 ± 30 eV for the two cases.An attempt to model the soft excess seen in the Rosat PSPC spectrum has been made assuming that the soft excess is the high energy tail of a disc spectrum which peaks in the UV part of the spectrum. Additionally it was assumed that there is a hard component contributing to the spectrum from UV to X-rays with parameters as described by the Ginga spectrum. The best fit parameters: the mass of the central source and the mass accretion rate were around 5 ± 1 · 10λ6 M⊙ and 0.2 ± 0.04 M⊙/yr, respectively.Our modelling shows that the soft X-ray excess can be described (χredλ2 < 1.2) as the high energy tail of an accretion disk spectrum if the intrinsic power law is quite steep (α = 2). The main contribution to the residuals in the Rosat PSPC range comes from 0.3–0.6 keV, with a tendency for these residuals to increase when the slope gets flatter. The accretion luminosity is ∼ 6.5 · 10λ44 erg/s for the best fit parameters, i.e. about the Eddington luminosity.


2019 ◽  
Vol 624 ◽  
pp. A142 ◽  
Author(s):  
C. Ferrigno ◽  
E. Bozzo ◽  
A. Sanna ◽  
G. K. Jaisawal ◽  
J. M. Girard ◽  
...  

The object IGR J17503–2636 is a hard X-ray transient discovered by INTEGRAL on 2018 August 11. This was the first ever reported X-ray emission from this source. Following the discovery, follow-up observations were carried out with Swift, Chandra, NICER, and NuSTAR. Here we report on the analysis of all of these X-ray data and the results obtained. Based on the fast variability in the X-ray domain, the spectral energy distribution in the 0.5–80 keV energy range, and the reported association with a highly reddened OB supergiant at ∼10 kpc, we conclude that IGR J17503–2636 is most likely a relatively faint new member of the supergiant fast X-ray transients. Spectral analysis of the NuSTAR data revealed a broad feature in addition to the typical power-law with exponential roll-over at high energy. This can be modeled either in emission or as a cyclotron scattering feature in absorption. If confirmed by future observations, this feature would indicate that IGR J17503–2636 hosts a strongly magnetized neutron star with B ∼ 2 × 1012 G.


2020 ◽  
Vol 498 (3) ◽  
pp. 3888-3901
Author(s):  
Jiachen Jiang ◽  
Luigi C Gallo ◽  
Andrew C Fabian ◽  
Michael L Parker ◽  
Christopher S Reynolds

ABSTRACT We present a detailed analysis of the XMM–Newton observations of five narrow-line Seyfert 1 galaxies (NLS1s). They all show very soft continuum emission in the X-ray band with a photon index of Γ ≳ 2.5. Therefore, they are referred to as ‘ultra-soft’ NLS1s in this paper. By modelling their optical/UV–X-ray spectral energy distribution (SED) with a reflection-based model, we find indications that the disc surface in these ultra-soft NLS1s is in a higher ionization state than other typical Seyfert 1 AGN. Our best-fitting SED models suggest that these five ultra-soft NLS1s have an Eddington ratio of λEdd = 1–20 assuming available black hole mass measurements. In addition, our models infer that a significant fraction of the disc energy in these ultra-soft NLS1s is radiated away in the form of non-thermal emission instead of the thermal emission from the disc. Due to their extreme properties, X-ray observations of these sources in the iron band are particularly challenging. Future observations, e.g. from Athena, will enable us to have a clearer view of the spectral shape in the iron band and thus distinguish the reflection model from other interpretations of their broad-band spectra.


2019 ◽  
Vol 486 (2) ◽  
pp. 1741-1762 ◽  
Author(s):  
L Foffano ◽  
E Prandini ◽  
A Franceschini ◽  
S Paiano

ABSTRACT Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. The non-thermal emission of the relativistic jet peaks in the spectral energy distribution (SED) plot with the synchrotron emission in X-rays and with the gamma-ray emission in the TeV range or above. These high photon energies may represent a challenge for the standard modelling of these sources. They are important for the implications on the indirect measurements of the extragalactic background light, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. In this paper, we perform a comparative study of the multiwavelength spectra of 32 EHBL objects detected by the Swift-BAT telescope in the hard X-ray band and by the Fermi-LAT telescope in the high-energy gamma-ray band. The source sample presents uniform spectral properties in the broad-band SEDs, except for the TeV gamma-ray band where an interesting bimodality seems to emerge. This suggests that the EHBL class is not homogeneous, and a possible subclassification of the EHBLs may be unveiled. Furthermore, in order to increase the number of EHBLs and settle their statistics, we discuss the potential detectability of the 14 currently TeV gamma-ray undetected sources in our sample by the Cherenkov telescopes.


2020 ◽  
Vol 500 (1) ◽  
pp. 565-575
Author(s):  
Aru Beri ◽  
Sachindra Naik ◽  
Kulinder Pal Singh ◽  
Gaurava K Jaisawal ◽  
Sudip Bhattacharyya ◽  
...  

ABSTRACT Swift J0243.6+6124, the first Galactic ultraluminous X-ray pulsar, was observed during its 2017–2018 outburst with AstroSat at both sub- and super-Eddington levels of accretion with X-ray luminosities of LX ∼ 7 × 1037 and 6 × 1038 erg s−1, respectively. Our broad-band timing and spectral observations show that X-ray pulsations at ${\sim}9.85~\rm {s}$ have been detected up to 150 keV when the source was accreting at the super-Eddington level. The pulse profiles are a strong function of both energy and source luminosity, showing a double-peaked profile with pulse fraction increasing from ∼$10{{{\ \rm per\ cent}}}$ at $1.65~\rm {keV}$ to 40–80 ${{\ \rm per\ cent}}$ at $70~\rm {keV}$. The continuum X-ray spectra are well modelled with a high-energy cut-off power law (Γ ∼ 0.6–0.7) and one or two blackbody components with temperatures of ∼0.35 and $1.2~\rm {keV}$, depending on the accretion level. No iron line emission is observed at sub-Eddington level, while a broad emission feature at around 6.9 keV is observed at the super-Eddington level, along with a blackbody radius ($121\!-\!142~\rm {km}$) that indicates the presence of optically thick outflows.


Sign in / Sign up

Export Citation Format

Share Document