scholarly journals Solar wind temperature anisotropy constraints from streaming instabilities

2018 ◽  
Vol 613 ◽  
pp. A23 ◽  
Author(s):  
S. Vafin ◽  
M. Lazar ◽  
H. Fichtner ◽  
R. Schlickeiser ◽  
M. Drillisch

Due to the relatively low rate of particle-particle collisions in the solar wind, kinetic instabilities (e.g., the mirror and firehose) play an important role in regulating large deviations from temperature isotropy. These instabilities operate in the high β∥ > 1 plasmas, and cannot explain the other limits of the temperature anisotropy reported by observations in the low beta β∥ < 1 regimes. However, the instability conditions are drastically modified in the presence of streaming (or counterstreaming) components, which are ubiquitous in space plasmas. These effects have been analyzed for the solar wind conditions in a large interval of heliospheric distances, 0.3–2.5 AU. It was found that proton counter-streams are much more crucial for plasma stability than electron ones. Moreover, new instability thresholds can potentially explain all observed bounds on the temperature anisotropy, and also the level of differential streaming in the solar wind.

2021 ◽  
Author(s):  
Shaaban Mohammed Shaaban Hamd ◽  
Marian Lazar ◽  
Rodrigo R. López ◽  
Robert F. Wimmer-Schweingruber ◽  
Horst Fichtner

&lt;p&gt;In collision-poor space plasmas the main physical processes are governed by fluctuations and their interactions with plasma particles. An important &lt;span&gt;source of waves and coherent fluctuations are kinetic instabilities driven &lt;/span&gt;by, e.g., protons and electrons exhibiting temperature anisotropies. Unfortunately, such instabilities are generally investigated independently of each other, thereby ignoring their interplay and preventing a realistic treatment of their implications. Here we present the first results of an extended quasilinear approach, which not only confirms linear predictions but also unveils new regimes triggered by cumulative effects of the proton &lt;span&gt;and electron instabilities (e.g., electromagnetic cyclotron, firehose). By &lt;/span&gt;comparison to individual excitations combined proton- and electron-induced fluctuations grow and saturate at different intensities as well as different temporal scales in the quasilinear phase. Moreover, the enhanced wave fluctuations can markedly stimulate or inhibit the relaxation of temperature anisotropies, this way highly conditioning the evolution and saturation of instabilities.&lt;/p&gt;


2013 ◽  
Vol 777 (1) ◽  
pp. L3 ◽  
Author(s):  
Sofiane Bourouaine ◽  
Daniel Verscharen ◽  
Benjamin D. G. Chandran ◽  
Bennett A. Maruca ◽  
Justin C. Kasper

2021 ◽  
Vol 9 ◽  
Author(s):  
Pablo S. Moya ◽  
Roberto E. Navarro

Turbulence in space plasmas usually exhibits two regimes separated by a spectral break that divides the so called inertial and kinetic ranges. Large scale magnetic fluctuations are dominated by non-linear MHD wave-wave interactions following a −5/3 or −2 slope power-law spectrum. After the break, at scales in which kinetic effects take place, the magnetic spectrum follows a steeper power-law k−α shape given by a spectral index α &gt; 5/3. Despite its ubiquitousness, the possible effects of a turbulent background spectrum in the quasilinear relaxation of solar wind temperatures are usually not considered. In this work, a quasilinear kinetic theory is used to study the evolution of the proton temperatures in an initially turbulent collisionless plasma composed by cold electrons and bi-Maxwellian protons, in which electromagnetic waves propagate along a background magnetic field. Four wave spectrum shapes are compared with different levels of wave intensity. We show that a sufficient turbulent magnetic power can drive stable protons to transverse heating, resulting in an increase in the temperature anisotropy and the reduction of the parallel proton beta. Thus, stable proton velocity distribution can evolve in such a way as to develop kinetic instabilities. This may explain why the constituents of the solar wind can be observed far from thermodynamic equilibrium and near the instability thresholds.


2021 ◽  
Author(s):  
Pablo S Moya ◽  
Roberto E Navarro

&lt;p&gt;Turbulence in space plasmas usually exhibits two regimes separated by a spectral break that divides the so called inertial and kinetic ranges. Large scale magnetic fluctuations are dominated by MHD non-linear wave-wave interactions following a -5/3 or -3/2 slope power-law spectrum. After the break, at scales in which kinetic effects take place, the magnetic spectrum follows a steeper power-law &lt;em&gt;k&lt;sup&gt;- &amp;#945;&lt;/sup&gt;&lt;/em&gt; shape given by a spectral index &lt;em&gt;&amp;#945; &lt;/em&gt;&gt; 5/3. The location of the break and the particular value of &lt;em&gt;&amp;#945;, &lt;/em&gt;depend on plasma conditions, and different space environments can exhibit different spectral indices. Despite its ubiquitousness, the possible effects of a turbulent background spectrum in the quasilinear relaxation of solar wind temperatures are usually not considered. In this work, a quasilinear kinetic theory is used to study the evolution of the proton temperatures in a solar wind-like plasma composed by cold electrons and bi-Maxwellian protons, in which electromagnetic waves propagate along a background magnetic field. Four wave spectrum shapes are compared with different levels of wave intensity. We show that a sufficient turbulent magnetic power can drive stable protons to transverse heating, resulting in an increase in the temperature anisotropy and the reduction of the parallel proton beta. Thus, stable proton velocity distribution can evolve in such a way as to develop kinetic instabilities. This may explain why the constituents of the solar wind can be observed far from thermodynamic equilibrium and near the instability thresholds.&lt;/p&gt;


2021 ◽  
Vol 87 (3) ◽  
Author(s):  
R.A. López ◽  
S.M. Shaaban ◽  
M. Lazar

Space plasmas are known to be out of (local) thermodynamic equilibrium, as observations show direct or indirect evidences of non-thermal velocity distributions of plasma particles. Prominent are the anisotropies relative to the magnetic field, anisotropic temperatures, field-aligned beams or drifting populations, but also, the suprathermal populations enhancing the high-energy tails of the observed distributions. Drifting bi-Kappa distribution functions can provide a good representation of these features and enable for a kinetic fundamental description of the dispersion and stability of these collision-poor plasmas, where particle–particle collisions are rare but wave–particle interactions appear to play a dominant role in the dynamics. In the present paper we derive the full set of components of the dispersion tensor for magnetized plasma populations modelled by drifting bi-Kappa distributions. A new solver called DIS-K (DIspersion Solver for Kappa plasmas) is proposed to solve numerically the dispersion relations of high complexity. The solver is validated by comparing with the damped and unstable wave solutions obtained with other codes, operating in the limits of drifting Maxwellian and non-drifting Kappa models. These new theoretical tools enable more realistic characterizations, both analytical and numerical, of wave fluctuations and instabilities in complex kinetic configurations measured in-situ in space plasmas.


1. It is widely felt that any method of rejecting observations with large deviations from the mean is open to some suspicion. Suppose that by some criterion, such as Peirce’s and Chauvenet’s, we decide to reject observations with deviations greater than 4 σ, where σ is the standard error, computed from the standard deviation by the usual rule; then we reject an observation deviating by 4·5 σ, and thereby alter the mean by about 4·5 σ/ n , where n is the number of observations, and at the same time we reduce the computed standard error. This may lead to the rejection of another observation deviating from the original mean by less than 4 σ, and if the process is repeated the mean may be shifted so much as to lead to doubt as to whether it is really sufficiently representative of the observations. In many cases, where we suspect that some abnormal cause has affected a fraction of the observations, there is a legitimate doubt as to whether it has affected a particular observation. Suppose that we have 50 observations. Then there is an even chance, according to the normal law, of a deviation exceeding 2·33 σ. But a deviation of 3 σ or more is not impossible, and if we make a mistake in rejecting it the mean of the remainder is not the most probable value. On the other hand, an observation deviating by only 2 σ may be affected by an abnormal cause of error, and then we should err in retaining it, even though no existing rule will instruct us to reject such an observation. It seems clear that the probability that a given observation has been affected by an abnormal cause of error is a continuous function of the deviation; it is never certain or impossible that it has been so affected, and a process that completely rejects certain observations, while retaining with full weight others with comparable deviations, possibly in the opposite direction, is unsatisfactory in principle.


2021 ◽  
Author(s):  
Harlan Spence ◽  
Kristopher Klein ◽  
HelioSwarm Science Team

&lt;p&gt;Recently selected for phase A study for NASA&amp;#8217;s Heliophysics MidEx Announcement of Opportunity, the HelioSwarm Observatory proposes to transform our understanding of the physics of turbulence in space and astrophysical plasmas by deploying nine spacecraft to measure the local plasma and magnetic field conditions at many points, with separations between the spacecraft spanning MHD and ion scales.&amp;#160;&amp;#160;HelioSwarm resolves the transfer and dissipation of turbulent energy in weakly-collisional magnetized plasmas with a novel configuration of spacecraft in the solar wind. These simultaneous multi-point, multi-scale measurements of space plasmas allow us to reach closure on two science goals comprised of six science objectives: (1) reveal how turbulent energy is transferred in the most probable, undisturbed solar wind plasma and distributed as a function of scale and time; (2) reveal how this turbulent cascade of energy varies with the background magnetic field and plasma parameters in more extreme solar wind environments; (3) quantify the transfer of turbulent energy between fields, flows, and ion heat; (4) identify thermodynamic impacts of intermittent structures on ion distributions; (5) determine how solar wind turbulence affects and is affected by large-scale solar wind structures; and (6) determine how strongly driven turbulence differs from that in the undisturbed solar wind.&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document