scholarly journals γ Doradus stars as a test of angular momentum transport models

2019 ◽  
Vol 626 ◽  
pp. A121 ◽  
Author(s):  
R.-M. Ouazzani ◽  
J. P. Marques ◽  
M.-J. Goupil ◽  
S. Christophe ◽  
V. Antoci ◽  
...  

Helioseismology and asteroseismology of red giant stars have shown that distribution of angular momentum in stellar interiors, and the evolution of this distribution with time remains an open issue in stellar physics. Owing to the unprecedented quality and long baseline of Kepler photometry, we are able to seismically infer internal rotation rates in γ Doradus stars, which provide the main-sequence counterpart to the red-giants puzzle. Here, we confront these internal rotation rates to stellar evolution models which account for rotationally induced transport of angular momentum, in order to test angular momentum transport mechanisms. On the one hand, we used a stellar model-independent method developed by our team in order to obtain accurate, seismically inferred, buoyancy radii and near-core rotation for 37 γ Doradus stars observed by Kepler. We show that the stellar buoyancy radius can be used as a reliable evolution indicator for field stars on the main sequence. On the other hand, we computed rotating evolutionary models of intermediate-mass stars including internal transport of angular momentum in radiative zones, following the formalism developed in the series of papers started by Zahn (1992, A&A, 265, 115), with the CESTAM code. This code calculates the rotational history of stars from the birth line to the tip of the RGB. The initial angular momentum content has to be set initially, which is done here by fitting rotation periods in young stellar clusters. We show a clear disagreement between the near-core rotation rates measured in the sample and the rotation rates obtained from the evolutionary models including rotationally induced transport of angular momentum following Zahn’s prescriptions. These results show a disagreement similar to that of the Sun and red giant stars in the considered mass range. This suggests the existence of missing mechanisms responsible for the braking of the core before and along the main sequence. The efficiency of the missing mechanisms is investigated. The transport of angular momentum as formalized by Zahn and Maeder cannot explain the measurements of near-core rotation in main-sequence intermediate-mass stars we have at hand.

2014 ◽  
Vol 9 (S307) ◽  
pp. 165-170
Author(s):  
P. Eggenberger

AbstractAsteroseismic data obtained by theKeplerspacecraft have led to the recent detection and characterization of rotational frequency splittings of mixed modes in red-giant stars. This has opened the way to the determination of the core rotation rates for these stars, which is of prime importance to progress in our understanding of internal angular momentum transport. In this contribution, we discuss which constraints can be brought by these asteroseismic measurements on the modelling of angular momentum transport in stellar radiative zones.


2020 ◽  
Vol 634 ◽  
pp. L16 ◽  
Author(s):  
J. W. den Hartogh ◽  
P. Eggenberger ◽  
S. Deheuvels

Context. The internal characteristics of stars, such as their core rotation rates, are obtained via asteroseismic observations. A comparison of core rotation rates found in this way with core rotation rates as predicted by stellar evolution models demonstrate a large discrepancy. This means that there must be a process of angular momentum transport missing in the current theory of stellar evolution. A new formalism was recently proposed to fill in for this missing process, which has the Tayler instability as its starting point (by Fuller et al. 2019, MNRAS, 485, 3661, hereafter referred to as “Fuller-formalism”). Aims. We investigate the effect of the Fuller-formalism on the internal rotation of stellar models with an initial mass of 2.5 M⊙. Methods. Stellar evolution models, including the Fuller-formalism, of intermediate-mass stars were calculated to make a comparison between asteroseismically obtained core rotation rates in the core He burning phase and in the white dwarf phase. Results. Our main results show that models including the Fuller-formalism can match the core rotation rates obtained for the core He burning phases. However, these models are unable to match the rotation rates obtained for white dwarfs. When we exclude the Fuller-formalism at the end of the core He burning phase, the white dwarf rotation rates of the models match the observed rates. Conclusions. We conclude that in the present form, the Fuller-formalism cannot be the sole solution for the missing process of angular momentum transport in intermediate-mass stars.


2019 ◽  
Vol 621 ◽  
pp. A66 ◽  
Author(s):  
P. Eggenberger ◽  
S. Deheuvels ◽  
A. Miglio ◽  
S. Ekström ◽  
C. Georgy ◽  
...  

Context. The observations of solar-like oscillations in evolved stars have brought important constraints on their internal rotation rates. To correctly reproduce these data, an efficient transport mechanism is needed in addition to the transport of angular momentum by meridional circulation and shear instability. The efficiency of this undetermined process is found to increase both with the mass and the evolutionary stage during the red giant phase. Aims. We study the efficiency of the transport of angular momentum during the subgiant phase. Methods. The efficiency of the unknown transport mechanism is determined during the subgiant phase by comparing rotating models computed with an additional corresponding viscosity to the asteroseismic measurements of both core and surface-rotation rates for six subgiants observed by the Kepler spacecraft. We then investigate the change in the efficiency of this transport of angular momentum with stellar mass and evolution during the subgiant phase. Results. The precise asteroseismic measurements of both core and surface-rotation rates available for the six Kepler targets enable a precise determination of the efficiency of the transport of angular momentum needed for each of these subgiants. These results are found to be insensitive to all the uncertainties related to the modelling of rotational effects before the post-main sequence (poMS) phase. An interesting exception in this context is the case of young subgiants (typical values of log(g) close to 4), because their rotational properties are sensitive to the degree of radial differential rotation on the main sequence (MS). These young subgiants constitute therefore perfect targets to constrain the transport of angular momentum on the MS from asteroseismic observations of evolved stars. As for red giants, we find that the efficiency of the additional transport process increases with the mass of the star during the subgiant phase. However, the efficiency of this undetermined mechanism decreases with evolution during the subgiant phase, contrary to what is found for red giants. Consequently, a transport process with an efficiency that increases with the degree of radial differential rotation cannot account for the core-rotation rates of subgiants, while it correctly reproduces the rotation rates of red giant stars. This suggests that the physical nature of the additional mechanism needed for the internal transport of angular momentum may be different in subgiant and red giant stars.


2019 ◽  
Vol 631 ◽  
pp. L6 ◽  
Author(s):  
P. Eggenberger ◽  
J. W. den Hartogh ◽  
G. Buldgen ◽  
G. Meynet ◽  
S. J. A. J. Salmon ◽  
...  

Context. Asteroseismic observations enable the characterisation of the internal rotation of evolved stars. These measurements reveal that an unknown efficient angular momentum (AM) transport mechanism is needed for subgiant and red giant stars in addition to hydrodynamic transport processes. A revised prescription for AM transport by the magnetic Tayler instability has been recently proposed as a possible candidate for such a missing mechanism. Aims. We compare the rotational properties predicted by this magnetic AM transport to asteroseismic constraints obtained for evolved stars with a particular focus on the subgiant phase. Methods. We computed models accounting for the recent prescription for AM transport by the Tayler instability with the Geneva stellar evolution code for subgiant and red giant stars, for which an asteroseismic determination of both core and surface rotation rates is available. Results. The revised prescription for the transport by the Tayler instability leads to low core rotation rates after the main sequence that are in better global agreement with asteroseismic measurements than those predicted by models with purely hydrodynamic processes or with the original Tayler-Spruit dynamo. A detailed comparison with asteroseismic data shows that the rotational properties of at most two of the six subgiants can be correctly reproduced by models accounting for this revised magnetic transport process. This result is obtained independently of the value adopted for the calibration parameter in this prescription. We also find that this transport by the Tayler instability faces difficulties in simultaneously reproducing asteroseismic measurements available for subgiant and red giant stars. The low values of the calibration parameter needed to correctly reproduce the rotational properties of two of the six subgiants lead to core rotation rates during the red giant phase that are too high. Inversely, the higher values of this parameter needed to reproduce the core rotation rates of red giants lead to a very low degree of radial differential rotation before the red giant phase, which is in contradiction with the internal rotation of subgiant stars. Conclusions. In its present form, the revised prescription for the transport by the Tayler instability does not provide a complete solution to the missing AM transport revealed by asteroseismology of evolved stars.


Solar Physics ◽  
1990 ◽  
Vol 128 (1) ◽  
pp. 287-298 ◽  
Author(s):  
C. Vigneron ◽  
A. Mangeney ◽  
C. Catala ◽  
E. Schatzman

2019 ◽  
Vol 491 (4) ◽  
pp. 5248-5257 ◽  
Author(s):  
Robert A Wittenmyer ◽  
R P Butler ◽  
Jonathan Horner ◽  
Jake Clark ◽  
C G Tinney ◽  
...  

ABSTRACT Our knowledge of the populations and occurrence rates of planets orbiting evolved intermediate-mass stars lags behind that for solar-type stars by at least a decade. Some radial velocity surveys have targeted these low-luminosity giant stars, providing some insights into the properties of their planetary systems. Here, we present the final data release of the Pan-Pacific Planet Search (PPPS), a 5 yr radial velocity survey using the 3.9 m Anglo-Australian Telescope. We present 1293 precise radial velocity measurements for 129 stars, and highlight 6 potential substellar-mass companions, which require additional observations to confirm. Correcting for the substantial incompleteness in the sample, we estimate the occurrence rate of giant planets orbiting low-luminosity giant stars to be approximately 7.8$^{+9.1}_{-3.3}$ per cent. This result is consistent with the frequency of such planets found to orbit main-sequence A-type stars, from which the PPPS stars have evolved.


2020 ◽  
Vol 639 ◽  
pp. A63
Author(s):  
Patrick Gaulme ◽  
Jason Jackiewicz ◽  
Federico Spada ◽  
Drew Chojnowski ◽  
Benoît Mosser ◽  
...  

Oscillating red-giant stars have provided a wealth of asteroseismic information regarding their interiors and evolutionary states, which enables detailed studies of the Milky Way. The objective of this work is to determine what fraction of red-giant stars shows photometric rotational modulation, and understand its origin. One of the underlying questions is the role of close binarity in this population, which relies on the fact that red giants in short-period binary systems (less than 150 days or so) have been observed to display strong rotational modulation. We selected a sample of about 4500 relatively bright red giants observed by Kepler, and show that about 370 of them (∼8%) display rotational modulation. Almost all have oscillation amplitudes below the median of the sample, while 30 of them are not oscillating at all. Of the 85 of these red giants with rotational modulation chosen for follow-up radial-velocity observation and analysis, 34 show clear evidence of spectroscopic binarity. Surprisingly, 26 of the 30 nonoscillators are in this group of binaries. On the contrary, about 85% of the active red giants with detectable oscillations are not part of close binaries. With the help of the stellar masses and evolutionary states computed from the oscillation properties, we shed light on the origin of their activity. It appears that low-mass red-giant branch stars tend to be magnetically inactive, while intermediate-mass ones tend to be highly active. The opposite trends are true for helium-core burning (red clump) stars, whereby the lower-mass clump stars are comparatively more active and the higher-mass ones are less active. In other words, we find that low-mass red-giant branch stars gain angular momentum as they evolve to clump stars, while higher-mass ones lose angular momentum. The trend observed with low-mass stars leads to possible scenarios of planet engulfment or other merging events during the shell-burning phase. Regarding intermediate-mass stars, the rotation periods that we measured are long with respect to theoretical expectations reported in the literature, which reinforces the existence of an unidentified sink of angular momentum after the main sequence. This article establishes strong links between rotational modulation, tidal interactions, (surface) magnetic fields, and oscillation suppression. There is a wealth of physics to be studied in these targets that is not available in the Sun.


2009 ◽  
Vol 5 (S266) ◽  
pp. 374-374
Author(s):  
C. Cortés ◽  
J. R. P. Silva ◽  
A. Recio–Blanco ◽  
M. Catelan ◽  
J. D. Do Nascimento ◽  
...  

AbstractWe describe the behavior of the rotational velocity in metal-poor stars ([Fe/H] ~ −0.5 dex) at different evolutionary stages, based on v sin i values from the literature. Our sample is composed of stars in the field and in some Galactic globular clusters, including stars on the main sequence (MS), red-giant branch (RGB), and horizontal branch (HB). The metal-poor stars are mainly slow rotators, and their v sin i distribution along the Hertzsprung–Russell diagram is quite homogeneous. Nevertheless, a few moderate to high values of v sin i are found for stars located on the MS and the HB. We show that the overall distribution of v sin i values is basically independent of metallicity for the stars in our sample. In particular, the fast-rotating MS stars in our sample exhibit similar rotation rates as their metal-rich counterparts, suggesting that some may actually be fairly young, in spite of their low metallicity, or else that at least some would be better classified as blue straggler stars. We do not find significant evidence of evolution in v sin i values as a function of position on the RGB. In particular, we do not confirm previous suggestions that stars close to the RGB tip rotate faster than their less-evolved counterparts. While the presence of fast rotators among moderately cool blue-HB stars has been suggested as due to angular-momentum transport from a stellar core that has retained significant angular momentum during its prior evolution, we find that any such transport mechanisms must likely operate very fast as the star arrives on the zero-age HB (ZAHB), since we do not find a link between evolution off the ZAHB and v sin i values.


2017 ◽  
Vol 605 ◽  
pp. A31 ◽  
Author(s):  
C. Pinçon ◽  
K. Belkacem ◽  
M. J. Goupil ◽  
J. P. Marques

Context. The seismic data provided by the space-borne missions CoRoT and Kepler enabled us to probe the internal rotation of thousands of evolved low-mass stars. Subsequently, several studies showed that current stellar evolution codes are unable to reproduce the low core rotation rates observed in these stars. These results indicate that an additional angular momentum transport process is necessary to counteract the spin up due to the core contraction during the post-main sequence evolution. For several candidates, the transport induced by internal gravity waves (IGW) could play a non-negligible role. Aims. We aim to investigate the effect of IGW generated by penetrative convection on the internal rotation of low-mass stars from the subgiant branch to the beginning of the red giant branch. Methods. A semi-analytical excitation model was used to estimate the angular momentum wave flux. The characteristic timescale associated with the angular momentum transport by IGW was computed and compared to the contraction timescale throughout the radiative region of stellar models at different evolutionary stages. Results. We show that IGW can efficiently counteract the contraction-driven spin up of the core of subgiant stars if the amplitude of the radial-differential rotation (between the center of the star and the top of the radiative zone) is higher than a threshold value. This threshold depends on the evolutionary stage and is comparable to the differential rotation rates inferred for a sample of subgiant stars observed by the satellite Kepler. Such an agreement can therefore be interpreted as the consequence of a regulation mechanism driven by IGW. This result is obtained under the assumption of a smooth rotation profile in the radiative region and holds true even if a wide range of values is considered for the parameters of the generation model. In contrast, on the red giant branch, we find that IGW remain insufficient, on their own, to explain the observations because of an excessive radiative damping. Conclusions. IGW generated by penetrative convection are able to efficiently extract angular momentum from the core of stars on the subgiant branch and accordingly have to be taken into account. Moreover, agreements with the observations reinforce the idea that their effect is essential to regulate the amplitude of the radial-differential rotation in subgiant stars. On the red giant branch, another transport mechanism must likely be invoked.


Sign in / Sign up

Export Citation Format

Share Document