scholarly journals The Leo-I group: new dwarf galaxy and ultra diffuse galaxy candidates

2018 ◽  
Vol 615 ◽  
pp. A105 ◽  
Author(s):  
Oliver Müller ◽  
Helmut Jerjen ◽  
Bruno Binggeli

Context. The study of dwarf galaxies and their environments provides crucial test beds for predictions of cosmological models and insights into the structure formation on small cosmological scales. In recent years, many problems on the scale of groups of galaxies has challenged the current standard model of cosmology. Aims. Our aim is to increase the sample of known galaxies in the Leo-I group, which contains the M 96 subgroup and the Leo Triplet. This galaxy aggregate is located at the edge of the Local Volume at a mean distance of 10.7 Mpc. Methods. We employed image enhancing techniques to search for low surface brightness objects in publicly available gr images taken by the Sloan Digital Sky Survey within 500 square degrees around the Leo-I group. Once detected, we performed surface photometry and compared their structural parameters to other known dwarf galaxies in the nearby universe. Results. We found 36 new dwarf galaxy candidates within the search area. Their morphology and structural parameters resemble known dwarfs in other groups. Among the candidates five or six galaxies are considered as ultra diffuse galaxy candidates. If confirmed, they would be some of the closest examples of this galaxy type. We assessed the luminosity function of the Leo-I group and find it to be considerably rich in dwarf galaxies, with twice the number of galaxies as the Local Group at a limiting magnitude of MV = −10 and a steeper faint-end slope.

2006 ◽  
Vol 2 (S235) ◽  
pp. 300-300
Author(s):  
R.O. Amorín ◽  
J.A.L. Aguerri ◽  
L.M. Cairós ◽  
N. Caon ◽  
C. Muñoz-Tuñón

AbstractBlue compact dwarf (BCD) galaxies are gas-rich, low-luminosity (Mb≳-18 mag) and compact systems, currently undergoing violent star-formation burst (Sargent & Searle 1970). While it was initially hypothesized that they were very young galaxies (e.g. Sargent & Searle 1970, et al. 1988), the subsecuent detection of an extended, redder stellar host galaxy showed that the vast majority of them are old systems (e.g. Gil de Paz et al. 2003,2005). BCDs play an important role for understanding the process of galaxy formation and evolution.The structural properties of the low surface brightness stellar host in BCDs are often studied by fitting r1/n models to the outer regions of their radial profiles. The limitations imposed by the presence of a large starburst emission overlapping the underlying component makes this kind of analysis a difficult task.We propose a two-dimensional fitting methodology in order to improve the extraction of the structural parameters of the LSB host Amorín et al. 2006, submitted). A set of ideal simulations are presented in order to test the reliability of the method and to determine its robustness and flexibility. We present the different steps of the method discussing its advantages and weaknesses. We compare the results for a sample of eight objects with those already obtained using a one-dimensional technique (Caon et al. 2005).We fit a PSF convolved Sérsic model to the BVR images with the GALFIT publicly software (Peng et al. 2002). We restrict the fit to the stellar host by masking out the starburst region and take special care to minimize the sky-subtraction uncertainties. Consistency checks are performed to assess the reliability and accuracy of the derived structural parameters.We obtain robust fits for all the sample galaxies, all of which, except one, show low Sérsic indices n—very close to 1—with good agreement in the three bands. These findings suggest that the stellar hosts in BCDs have near-exponential profiles. Since the Sérsic index n of host galaxies is important in the context of the possible structural and evolutionary connections among the different types of dwarf galaxies, we are currently extending the study to a larger sample of objects. This kind of studies will help us to understand the mechanisms that form and shape BCD galaxies, and how they relate to the other dwarf galaxy classes.


2010 ◽  
Vol 27 (1) ◽  
pp. 45-55 ◽  
Author(s):  
Stefan C. Keller

AbstractThis study presents a tomographic survey of a subset of the outer halo (10–40 kpc) drawn from the Sloan Digital Sky Survey Data Release 6. Halo substructure on spatial scales of >3 degrees is revealed as an excess in the local density of sub-giant stars. With an appropriate assumption of a model stellar isochrone it is possible for us to then derive distances to the sub-giant population. We describe three new candidate halo substructures; the 160- and 180-degree over-densities (at distances of 17 and 19 kpc respectively and radii of 1.3 and 1.5 kpc respectively) and an extended feature at 28 kpc that covers at least 162 deg2, the Virgo Equatorial Stream. In addition, we recover the Sagittarius dwarf galaxy (Sgr) leading-arm material and the Virgo Over-Density.The derived distances, together with the number of sub-giant stars associated with each substructure, enables us to derive the integrated luminosity for the features. The tenuous, low surface brightness of the features strongly suggests an origin from the tidal disruption of an accreted galaxy or galaxies. Given the dominance of the tidal debris of Sgr in this region of the sky we investigate if our observations can be accommodated by tidal disruption models for Sgr. The clear discordance between observations and model predictions for known Sgr features means it is difficult to tell unambiguously if the new substructures are related to Sgr or not. Radial velocities in the stellar over-densities will be critical in establishing their origins.


2016 ◽  
Vol 11 (S321) ◽  
pp. 266-266
Author(s):  
Javier Román ◽  
Juergen Fliri ◽  
Ignacio Trujillo

AbstractWe present new deep co-adds of data taken within Stripe 82 of the Sloan Digital Sky Survey (SDSS), especially stacked to reach the faintest surface brightness limits of this data set. Our reduction puts special emphasis on preserving the characteristics of the background (sky + diffuse light) in the input images using a non-aggressive sky subtraction strategy, resulting in an exquisite quality on extremely faint structures. The IAC Stripe 82 co-adds offer a rather unique possibility to study the low surface brightness Universe like stellar haloes and disc truncations, low surface brightness, tidal galactic interactions, extremely faint dwarf galaxies, intra-cluster light or diffuse light from galactic dust. The imaging data is publicly available at http://www.iac.es/proyecto/stripe82/.


1999 ◽  
Vol 171 ◽  
pp. 253-260 ◽  
Author(s):  
John J. Salzer ◽  
Stuart A. Norton

AbstractWe analyze deep CCD images of nearby Blue Compact Dwarf (BCD) galaxies in an attempt to understand the nature of the progenitors which are hosting the current burst of star formation. In particular, we ask whether BCDs are hosted by normal or low-surface-brightness dI galaxies. We conclude that BCDs are in fact hosted by gas-rich galaxies which populate the extreme high-central-mass-density end of the dwarf galaxy distribution. Such galaxies are predisposed to having numerous strong bursts of star formation in their central regions. In this picture, BCDs can only occur in the minority of dwarf galaxies, rather than being a common phase experienced by all gas-rich dwarfs.


2017 ◽  
Vol 13 (S334) ◽  
pp. 101-108
Author(s):  
Jon A. Holtzman ◽  
Sten Hasselquist ◽  

AbstractThe SDSS Apache Point Observatory Galactic Evolution Experiment (APOGEE) has collected high resolution near-IR spectra for several hundred thousand stars throughout the Milky Way. We review some of the results related to chemistry of stars in the disk, where APOGEE has a particular advantage by virtue of being able to work in more obscured areas. The ability to measure carbon and nitrogen abundances in giants in the near-IR provides insight into stellar ages. We summarize results on the variation of mean metallicity, metallicity distribution functions, and the [α/Fe]–[Fe/H] relation across the Galactic disk, as well as results on the structural parameters in mono-abundance populations. Many of these results suggest that radial migration has played a significant role in the Galactic disk. It may be possible to disentangle radial mixing using multi-element abundance patterns.


2020 ◽  
Vol 493 (4) ◽  
pp. 5625-5635
Author(s):  
Cody M Rude ◽  
Madina R Sultanova ◽  
Gihan L Ipita Kaduwa Gamage ◽  
Wayne A Barkhouse ◽  
Sandanuwan P Kalawila Vithanage

ABSTRACT Evolution of galaxies in dense environments can be affected by close encounters with neighbouring galaxies and interactions with the intracluster medium. Dwarf galaxies (dGs) are important as their low mass makes them more susceptible to these effects than giant systems. Combined luminosity functions (LFs) in the r and u band of 15 galaxy clusters were constructed using archival data from the Canada–France–Hawaii Telescope. LFs were measured as a function of clustercentric radius from stacked cluster data. Marginal evidence was found for an increase in the faint-end slope of the u-band LF relative to the r-band with increasing clustercentric radius. The dwarf-to-giant ratio (DGR) was found to increase toward the cluster outskirts, with the u-band DGR increasing faster with clustercentric radius compared to the r-band. The dG blue fraction was found to be ∼2 times larger than the giant galaxy blue fraction over all clustercentric distance (∼5σ level). The central concentration (C) was used as a proxy to distinguish nucleated versus non-nucleated dGs. The ratio of high-C to low-C dGs was found to be ∼2 times greater in the inner cluster region compared to the outskirts (2.8σ level). The faint-end slope of the r-band LF for the cluster outskirts (0.6 ≤ r/r200 < 1.0) is steeper than the Sloan Digital Sky Survey field LF, while the u-band LF is marginally steeper at the 2.5σ level. Decrease in the faint-end slope of the r- and u-band cluster LFs towards the cluster centre is consistent with quenching of star formation via ram pressure stripping and galaxy–galaxy interactions.


Sign in / Sign up

Export Citation Format

Share Document