scholarly journals Diagnosing aerosols in extrasolar giant planets with cross-correlation function of water bands

2018 ◽  
Vol 619 ◽  
pp. A3 ◽  
Author(s):  
Lorenzo Pino ◽  
David Ehrenreich ◽  
Romain Allart ◽  
Christophe Lovis ◽  
Matteo Brogi ◽  
...  

Transmission spectroscopy with ground-based, high-resolution instruments provides key insight into the composition of exoplanetary atmospheres. Molecules such as water and carbon monoxide have been unambiguously identified in hot gas giants through cross-correlation techniques. A maximum in the cross-correlation function (CCF) is found when the molecular absorption lines in a binary mask or model template match those contained in the planet. Here, we demonstrate how the CCF method can be used to diagnose broadband spectroscopic features such as scattering by aerosols in high-resolution transit spectra. The idea consists in exploiting the presence of multiple water bands from the optical to the near-infrared. We have produced a set of models of a typical hot Jupiter spanning various conditions of temperature and aerosol coverage. We demonstrate that comparing the CCFs of individual water bands for the models constrains the presence and the properties of the aerosol layers. The contrast difference between the CCFs of two bands can reach ~100 ppm, which could be readily detectable with current or upcoming high-resolution stabilized spectrographs spanning a wide spectral range, such as ESPRESSO, CARMENES, HARPS-N+GIANO, HARPS+NIRPS, SPIRou, or CRIRES+.


2005 ◽  
Vol 475-479 ◽  
pp. 4059-4062
Author(s):  
F. Lin ◽  
Qing Chen ◽  
Lian Mao Peng

A new procedure is proposed for the exit electron wave reconstruction using a small set of high-resolution electron microscopy (HREM) images. This procedure is similar to that proposed by van Dyck and coworkers, but the relative shifts between different HREM images are obtained via the genetic algorithm instead of the more widely used cross-correlation function (XCF) method. The new procedure is demonstrated using simulated HREM images with added noise, and shown to be able to deal with situation where the scheme based on the method of XCF is not applicable.





2019 ◽  
Vol 631 ◽  
pp. A104 ◽  
Author(s):  
M. C. Baglio ◽  
F. Vincentelli ◽  
S. Campana ◽  
F. Coti Zelati ◽  
P. D’Avanzo ◽  
...  

We report on a simultaneous near-infrared, optical, and X-ray campaign performed in 2017 with the XMM-Newton and Swift satellites and the HAWK-I instrument mounted on the Very Large Telescope (VLT) on the transitional millisecond pulsar PSR J1023+0038. Near-infrared observations were performed in fast-photometric mode (0.5 s exposure time) in order to detect any fast variation of the flux and correlate this with the optical and X-ray light curves. The optical light curve shows the typical sinusoidal modulation at the system orbital period (4.75 h). No significant flaring or flickering is found in the optical, nor any signs of transitions between active and passive states. On the contrary, the near-infrared light curve displays a bimodal behaviour, showing strong flares in the first part of the curve, and an almost flat trend in the rest. The X-ray light curves instead show a few low-high mode transitions, but no flaring activity is detected. Interestingly, one of the low-high mode transitions occurs at the same time as the emission of an infrared flare. This can be interpreted in terms of the emission of an outflow or a jet: the infrared flare could be due to the evolving spectrum of the jet, which possesses a break frequency that moves from higher (near-infrared) to lower (radio) frequencies after the launching, which has to occur at the low-high mode transition. We also present the cross-correlation function between the optical and near-infrared curves. The near.infrared curve is bimodal, therefore we divided it into two parts (flaring and quiet). While the cross-correlation function of the quiet part is found to be flat, the function that refers to the flaring part shows a narrow peak at ∼10 s, which indicates a delay of the near-infrared emission with respect to the optical. This lag can be interpreted as reprocessing of the optical emission at the light cylinder radius with a stream of matter spiraling around the system due to a phase of radio ejection. This strongly supports a different origin of the infrared flares that are observed for PSR J1023+0038 with respect to the optical and X-ray flaring activity that has been reported in other works on the same source.





2005 ◽  
Vol 636 (1) ◽  
pp. L9-L12 ◽  
Author(s):  
Jeff Cooke ◽  
Arthur M. Wolfe ◽  
Eric Gawiser ◽  
Jason X. Prochaska


2006 ◽  
Vol 24 (3) ◽  
pp. 1093-1100 ◽  
Author(s):  
Cheng-Yuan Chang ◽  
Guu-Chang Yang ◽  
W.C. Kwong


Sign in / Sign up

Export Citation Format

Share Document