scholarly journals Fast and easy super-sample covariance of large-scale structure observables

2019 ◽  
Vol 624 ◽  
pp. A61 ◽  
Author(s):  
Fabien Lacasa ◽  
Julien Grain

We present a numerically cheap approximation to super-sample covariance (SSC) of large-scale structure cosmological probes, first in the case of angular power spectra. No new elements are needed besides those used to predict the considered probes, thus relieving analysis pipelines from having to develop a full SSC modeling, and reducing the computational load. The approximation is asymptotically exact for fine redshift bins Δz → 0. We furthermore show how it can be implemented at the level of a Gaussian likelihood or a Fisher matrix forecast as a fast correction to the Gaussian case without needing to build large covariance matrices. Numerical application to a Euclid-like survey show that, compared to a full SSC computation, the approximation nicely recovers the signal-to-noise ratio and the Fisher forecasts on cosmological parameters of the wCDM cosmological model. Moreover, it allows for a fast prediction of which parameters are going to be the most affected by SSC and at what level. In the case of photometric galaxy clustering with Euclid-like specifications, we find that σ8, ns, and the dark energy equation of state w are particularly heavily affected. We finally show how to generalize the approximation for probes other than angular spectra (correlation functions, number counts, and bispectra) and at the likelihood level, allowing for the latter to be non-Gaussian if necessary. We release publicly a Python module allowing the implementation of the SSC approximation and a notebook reproducing the plots of the article.

2021 ◽  
Vol 2021 (12) ◽  
pp. 003
Author(s):  
José Fonseca ◽  
Chris Clarkson

Abstract In this paper, we study how to directly measure the effect of peculiar velocities in the observed angular power spectra. We do this by constructing a new anti-symmetric estimator of Large Scale Structure using different dark matter tracers. We show that the Doppler term is the major component of our estimator and we show that we can measure it with a signal-to-noise ratio up to ∼ 50 using a futuristic SKAO HI galaxy survey. We demonstrate the utility of this estimator by using it to provide constraints on the Euler equation.


2020 ◽  
Vol 501 (1) ◽  
pp. 833-852
Author(s):  
Toshiki Kurita ◽  
Masahiro Takada ◽  
Takahiro Nishimichi ◽  
Ryuichi Takahashi ◽  
Ken Osato ◽  
...  

ABSTRACT We use a suite of N-body simulations to study intrinsic alignments (IA) of halo shapes with the surrounding large-scale structure in the ΛCDM model. For this purpose, we develop a novel method to measure multipole moments of the three-dimensional power spectrum of the E-mode field of halo shapes with the matter/halo distribution, $P_{\delta E}^{(\ell)}(k)$ (or $P^{(\ell)}_{{\rm h}E}$), and those of the auto-power spectrum of the E-mode, $P^{(\ell)}_{EE}(k)$, based on the E/B-mode decomposition. The IA power spectra have non-vanishing amplitudes over the linear to non-linear scales, and the large-scale amplitudes at k ≲ 0.1 h−1 Mpc are related to the matter power spectrum via a constant coefficient (AIA), similar to the linear bias parameter of galaxy or halo density field. We find that the cross- and auto-power spectra PδE and PEE at non-linear scales, k ≳ 0.1 h−1 Mpc, show different k-dependences relative to the matter power spectrum, suggesting a violation of the non-linear alignment model commonly used to model contaminations of cosmic shear signals. The IA power spectra exhibit baryon acoustic oscillations, and vary with halo samples of different masses, redshifts, and cosmological parameters (Ωm, S8). The cumulative signal-to-noise ratio for the IA power spectra is about 60 per cent of that for the halo density power spectrum, where the super-sample covariance is found to give a significant contribution to the total covariance. Thus our results demonstrate that the IA power spectra of galaxy shapes, measured from imaging and spectroscopic surveys for an overlapping area of the sky, can be used to probe the underlying matter power spectrum, the primordial curvature perturbations, and cosmological parameters, in addition to the standard galaxy density power spectrum.


1999 ◽  
Vol 183 ◽  
pp. 178-184 ◽  
Author(s):  
B.J. Boyle ◽  
R.J. Smith ◽  
T. Shanks ◽  
S.M. Croom ◽  
L. Miller

The study of large-scale structure through QSO clustering provides a potentially powerful route to determining the fundamental cosmological parameters of the Universe (see Croom & Shanks 1996). Unfortunately, previous QSO clustering studies have been limited by the relatively small sizes of homogeneous QSO catalogues that have been available. Although approximately 10,000 QSOs are now known (Veron-Cetty & Veron 1997), the largest catalogues suitable for clustering studies contain only 500–1000 QSOs (Boyle et al. 1990, Crampton et al. 1990, Hewett et al. 1994). Even combining all such suitable catalogues, the total number of QSOs which can be used for clustering studies is still only about 2000.


2016 ◽  
Vol 31 (21) ◽  
pp. 1640008 ◽  
Author(s):  
Hans Böhringer ◽  
Gayoung Chon

The high precision measurements of the cosmic microwave background by the Planck survey yielded tight constraints on cosmological parameters and the statistics of the density fluctuations at the time of recombination. This provides the means for a critical study of structure formation in the Universe by comparing the microwave background results with present epoch measurements of the cosmic large-scale structure. It can reveal subtle effects such as how different forms of Dark Matter may modify structure growth. Currently most interesting is the damping effect of structure growth by massive neutrinos. Different observations of low redshift matter density fluctuations provided evidence for a signature of massive neutrinos. Here we discuss the study of the cosmic large-scale structure with a complete sample of nearby, X-ray luminous clusters from our REFLEX cluster survey. From the observed X-ray luminosity function and its reproduction for different cosmological models, we obtain tight constraints on the cosmological parameters describing the matter density, [Formula: see text], and the density fluctuation amplitude, [Formula: see text]. A comparison of these constraints with the Planck results shows a discrepancy in the framework of a pure [Formula: see text]CDM model, but the results can be reconciled, if we allow for a neutrino mass in the range of 0.17 eV to 0.7 eV. Also some others, but not all of the observations of the nearby large-scale structure provide evidence or trends for signatures of massive neutrinos. With further improvement in the systematics and future survey projects, these indications will develop into a definitive measurement of neutrino masses.


2019 ◽  
Vol 491 (4) ◽  
pp. 4869-4883 ◽  
Author(s):  
Konstantinos Tanidis ◽  
Stefano Camera ◽  
David Parkinson

ABSTRACT Following on our purpose of developing a unified pipeline for large-scale structure data analysis with angular power spectra, we now include the weak lensing effect of magnification bias on galaxy clustering in a publicly available, modular parameter estimation code. We thus forecast constraints on the parameters of the concordance cosmological model, dark energy, and modified gravity theories from galaxy clustering tomographic angular power spectra. We find that a correct modelling of magnification is crucial not to bias the parameter estimation, especially in the case of deep galaxy surveys. Our case study adopts specifications of the Evolutionary Map of the Universe, which is a full-sky, deep radio-continuum survey, expected to probe the Universe up to redshift z ∼ 6. We assume the Limber approximation, and include magnification bias on top of density fluctuations and redshift-space distortions. By restricting our analysis to the regime where the Limber approximation holds true, we significantly minimize the computational time needed, compared to that of the exact calculation. We also show that there is a trend for more biased parameter estimates from neglecting magnification when the redshift bins are very wide. We conclude that this result implies a strong dependence on the lensing contribution, which is an integrated effect and becomes dominant when wide redshift bins are considered. Finally, we note that instead of being considered a contaminant, magnification bias encodes important cosmological information, and its inclusion leads to an alleviation of its degeneracy between the galaxy bias and the amplitude normalization of the matter fluctuations.


2010 ◽  
Vol 2010 ◽  
pp. 1-64 ◽  
Author(s):  
Michele Liguori ◽  
Emiliano Sefusatti ◽  
James R. Fergusson ◽  
E. P. S. Shellard

The most direct probe of non-Gaussian initial conditions has come from bispectrum measurements of temperature fluctuations in the Cosmic Microwave Background and of the matter and galaxy distribution at large scales. Such bispectrum estimators are expected to continue to provide the best constraints on the non-Gaussian parameters in future observations. We review and compare the theoretical and observational problems, current results, and future prospects for the detection of a nonvanishing primordial component in the bispectrum of the Cosmic Microwave Background and large-scale structure, and the relation to specific predictions from different inflationary models.


Sign in / Sign up

Export Citation Format

Share Document