scholarly journals Correlation of the rate of Type Ia supernovae with the parent galaxy properties: Light and shadows

2019 ◽  
Vol 625 ◽  
pp. A113 ◽  
Author(s):  
L. Greggio ◽  
E. Cappellaro

Context. The identification of the progenitors of Type Ia supernovae (SNIa) is extremely important in several astrophysical contexts, ranging from stellar evolution in close binary systems to evaluating cosmological parameters. Determining the distribution of the delay times (DTD) of SNIa progenitors can shed light on their nature. The DTD can be constrained by analysing the correlation between the SNIa rate and those properties of the parent galaxy which trace the average age of their stellar populations. Aims. We investigate the diagnostic capabilities of this correlation by examining its systematics with the various parameters at play: simple stellar population models, the adopted description for the star formation history (SFH) in galaxies, and the way in which the masses of the galaxies are evaluated. Methods. We computed models for the diagnostic correlations for a variety of input ingredients and for a few astrophysically motivated DTD laws appropriate for a wide range of possibilities for the SNIa progenitors. The models are compared to the results of three independent observational surveys. Results. The scaling of the SNIa rate with the properties of the parent galaxy is sensitive to all input ingredients mentioned above. This is a severe limitation on the possibility to discriminate alternative DTDs. In addition, current surveys show some discrepancies for the reddest and bluest galaxies, likely because of limited statistics and the inhomogeneity of the observations. For galaxies with intermediate colours the rates are in agreement, leading to a robust determination of the productivity of SNIa from stellar populations of ≃0.8 events per 1000 M⊙. Conclusions. Large stastistics of SNIa events along with accurate measurements of the SFH in the galaxies are required to derive firm constraints on the DTD. The LSST will achieve these results by providing a homogeneous, unbiased, and vast database on both SNIa and galaxies.

2004 ◽  
Vol 215 ◽  
pp. 571-572 ◽  
Author(s):  
S.-C. Yoon ◽  
N. Langer

Classical studies of accreting white dwarfs have assumed spherical symmetry. However, it is believed that in close binary systems the transfered matter carries angular momentum to spin up the accreting star. Here, we present preliminary results of CO white dwarf models which accrete helium rich matter with effects of rotation considered, in the context of the Sub-Chandrasekhar mass scenario for Type Ia supernovae.


2003 ◽  
Vol 208 ◽  
pp. 459-460
Author(s):  
Tatsuhiro Uenishi ◽  
Ken'ichi Nomoto ◽  
Izumi Hachisu

Type Ia supernovae are very good, but not perfect, standard candles, because their observed brightness shows a little diversity. The origin of this dibersity needs to be understood for the application to cosmology.In close binary systems, a white dwarf must be rotating faster and faster as it gains angular momentum from the accretion disk. Its rapid rotation affects its final mass and strucure just before a supernova expolosion. Brightness of supernovae can be changed if mass of their progenitors have some diversity.


2009 ◽  
Vol 5 (S262) ◽  
pp. 358-361
Author(s):  
Yutaka Ihara ◽  
Mamoru Doi ◽  
Tomoki Morokuma ◽  
Raynald Pain ◽  
Naohiro Takanashi ◽  
...  

AbstractWe present a measurement of the rate of high-z Type Ia supernovae (SNe Ia) using multi-epoch observations of Subaru/XMM-Newton Deep Field (SXDF) with Suprime-Cam on the Subaru Telescope. Although SNe Ia are regarded as a standard candle, progenitor systems of SNe Ia have not been resolved yet. One of the key parameters to show the progenitor systems by observations is the delay time distribution between the binary system formation and subsequent SN explosion. Recently, a wide range of delay time is studied by SN Ia rates compared with an assumed cosmic star formation history. If SNe Ia with short delay time are dominant, the cosmic SN Ia rate evolution should closely trace that of the cosmic star formation. In order to detect a lot of high-z SNe Ia and measure SN Ia rates, we repeatedly carried out wide and deep imaging observations in the í-band with Suprime-Cam in 2002 (FoV~1 deg2, mi < 25.5 mag). We obtained detailed light curves of the variable objects, and 50 objects are classified as SNe Ia using the light curve fitting method at the redshift range of 0.2 < z < 1.3. In order to check the completeness and contamination of the light curve classification method, we performed Monte Carlo simulations and generated ~100,000 light curves of SNe Ia and II from templates. The control time and detection efficiency of the SN survey are also calculated using the artificial light curves. We derived an increasing trend of rates at around z ~ 1.2. Our results are almost consistent with other SN Ia rate results from low-z to high-z. Our results are the first results of high-z SN Ia rates with large statistics using light curves obtained by ground based telescopes, and give us visions of the SN rate studies for the future.


2002 ◽  
Vol 187 ◽  
pp. 33-46
Author(s):  
K. Nomoto ◽  
C. Kobayashi ◽  
H. Umeda

The cosmic/galactic chemical evolutions have been modeled with the early metal enrichment by Type II supernovae (SNe II) and the delayed enrichment of Fe by Type Ia supernovae (SNe Ia). However, the exact nature of SN Ia progenitors have been obscure. Here we present the currently most plausible scenario of the progenitor binary systems of SNe Ia. This scenario involves strong winds from accreting white dwarfs, which introduces important metallicity effects, namely, low-metallicity inhibition of SNe Ia. Resultant predictions for the Galactic/cosmic chemical evolution and the cosmic SNe Ia rate are presented. Another importance of identifying the SN Ia progenitors lies in the use of SNe Ia as a “standard candle” to determine cosmological parameters. To examine whether the “evolution” of SNe Ia with redshift and metallicity is significant, we discuss how the metallicity affects the properties of the C+O white dwarfs such as the C/O ratio, and find the metallicity dependence is rather weak.


Author(s):  
Bruno Leibundgut ◽  
Brian Schmidt ◽  
Jason Spyromilio ◽  
Mark Phillips

2011 ◽  
Vol 7 (S281) ◽  
pp. 154-161 ◽  
Author(s):  
G. C. Anupama

AbstractRecurrent novae (RNe) belong to the group of cataclysmic variables that exhibit nova outbursts at intervals on the order of decades. They are rare, with 10 Galactic RNe known to date. Two are known in the LMC, while there are a few suspected RNe in M31. Nova outburst models require a high accretion rate on a massive white dwarf to explain the recurring nova outbursts, making this class of objects one of the most likely progenitor binary systems of Type Ia supernovae. The observational properties of the known Galactic recurrent novae are presented here, together with some discussion on the recent outbursts of RS Ophiuchi (2006), U Scorpii (2010), and T Pyxidis (2011).


2019 ◽  
Vol 485 (4) ◽  
pp. 5329-5344 ◽  
Author(s):  
J Lasker ◽  
R Kessler ◽  
D Scolnic ◽  
D Brout ◽  
D L Burke ◽  
...  

Abstract Calibration uncertainties have been the leading systematic uncertainty in recent analyses using Type Ia supernovae (SNe Ia) to measure cosmological parameters. To improve the calibration, we present the application of spectral energy distribution-dependent ‘chromatic corrections’ to the SN light-curve photometry from the Dark Energy Survey (DES). These corrections depend on the combined atmospheric and instrumental transmission function for each exposure, and they affect photometry at the 0.01 mag (1 per cent) level, comparable to systematic uncertainties in calibration and photometry. Fitting our combined DES and low-z SN Ia sample with baryon acoustic oscillation (BAO) and cosmic microwave background (CMB) priors for the cosmological parameters Ωm (the fraction of the critical density of the universe comprised of matter) and w (the dark energy equation of state parameter), we compare those parameters before and after applying the corrections. We find the change in w and Ωm due to not including chromatic corrections is −0.002 and 0.000, respectively, for the DES-SN3YR sample with BAO and CMB priors, consistent with a larger DES-SN3YR-like simulation, which has a w-change of 0.0005 with an uncertainty of 0.008 and an Ωm change of 0.000 with an uncertainty of 0.002. However, when considering samples on individual CCDs we find large redshift-dependent biases (∼0.02 in distance modulus) for SN distances.


2020 ◽  
Vol 641 ◽  
pp. A20
Author(s):  
Zhengwei Liu ◽  
Richard J. Stancliffe

The nature of the progenitors of type Ia supernovae (SNe Ia) remains a mystery. Binary systems consisting of a white dwarf (WD) and a main-sequence (MS) donor are potential progenitors of SNe Ia, in which a thermonuclear explosion of the WD may occur when its mass reaches the Chandrasekhar limit during accretion of material from a companion star. In the present work, we address theoretical rates and delay times of a specific MS donor channel to SNe Ia, in which a helium (He) star + MS binary produced from a common envelope event subsequently forms a WD + MS system without the He star undergoing mass transfer by Roche lobe overflow. By combining the results of self-consistent binary evolution calculations with population synthesis models, we find that the contribution of SNe Ia in this channel is around 2.0 × 10−4 yr−1. In addition, we find that delay times of SNe Ia in this channel cover a range of about 1.0–2.6 Gyr, and almost all SNe Ia produced in this way (about 97%) have a delay time of ≳1 Gyr. While the rate of SN Ia in this work is about 10% of the overall SN Ia rate, the channel represents a possible contribution to the old population (1–3 Gyr) of observed SNe Ia.


Sign in / Sign up

Export Citation Format

Share Document