scholarly journals H.E.S.S. detection of very high-energy γ-ray emission from the quasar PKS 0736+017

2020 ◽  
Vol 633 ◽  
pp. A162 ◽  
Author(s):  
◽  
H. Abdalla ◽  
R. Adam ◽  
F. Aharonian ◽  
F. Ait Benkhali ◽  
...  

Context. Flat-spectrum radio-quasars (FSRQs) are rarely detected at very high energies (E ≥ 100 GeV) due to their low-frequency-peaked spectral energy distributions. At present, only six FSRQs are known to emit very high-energy (VHE) photons, representing only 7% of the VHE extragalactic catalog, which is largely dominated by high-frequency-peaked BL Lacertae objects. Aims. Following the detection of MeV–GeV γ-ray flaring activity from the FSRQ PKS 0736+017 (z = 0.189) with Fermi-LAT, the H.E.S.S. array of Cherenkov telescopes triggered target-of-opportunity (ToO) observations on February 18, 2015, with the goal of studying the γ-ray emission in the VHE band. Methods. H.E.S.S. ToO observations were carried out during the nights of February 18, 19, 21, and 24, 2015. Together with Fermi-LAT, the multi-wavelength coverage of the flare includes Swift observations in soft X-ray and optical-UV bands, and optical monitoring (photometry and spectro-polarimetry) by the Steward Observatory, and the ATOM, the KAIT, and the ASAS-SN telescopes. Results. VHE emission from PKS 0736+017 was detected with H.E.S.S. only during the night of February 19, 2015. Fermi-LAT data indicate the presence of a γ-ray flare, peaking at the time of the H.E.S.S. detection, with a flux doubling timescale of around six hours. The γ-ray flare was accompanied by at least a 1 mag brightening of the non-thermal optical continuum. No simultaneous observations at longer wavelengths are available for the night of the H.E.S.S. detection. The γ-ray observations with H.E.S.S. and Fermi-LAT are used to put constraints on the location of the γ-ray emitting region during the flare: it is constrained to be just outside the radius of the broad-line region rBLR with a bulk Lorentz factor Γ ≃ 20, or at the level of the radius of the dusty torus rtorus with Γ ≃ 60. Conclusions. PKS 0736+017 is the seventh FSRQ known to emit VHE photons, and at z = 0.189 is the nearest so far. The location of the γ-ray emitting region during the flare can be tightly constrained thanks to opacity, variability, and collimation arguments.

2013 ◽  
Vol 9 (S304) ◽  
pp. 119-124
Author(s):  
Helene Sol

AbstractThe extragalactic very high energy (VHE) gamma-ray sky is dominated at the moment by more than fifty blazars detected by the present imaging atmospheric Cherenkov telescopes (IACT), with a majority (about 90%) of high-frequency peaked BL Lac objects (HBL) and a small number of low-frequency peaked and intermediate BL Lac objects (LBL and IBL) and flat spectrum radio quasars (FSRQ). A significant variability is often observed, with time scales from a few minutes to months and years. The spectral energy distribution (SED) of these blazars typically shows two bumps from the radio to the TeV range, which can usually be described by leptonic or hadronic processes. While elementary bricks of the VHE emission scenarios seem now reasonably well identified, a global picture of these sources, describing the geometry and dynamics of the VHE zone, is not yet available. Multiwavelength monitoring and global alert network will be important to better constrain the picture, especially with the perspective of CTA, a major project of the next generation in ground-based gamma-ray astronomy.


2019 ◽  
Vol 623 ◽  
pp. A175 ◽  
Author(s):  
◽  
V. A. Acciari ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
A. Arbet Engels ◽  
...  

The mechanisms producing fast variability of the γ-ray emission in active galactic nuclei (AGNs) are under debate. The MAGIC telescopes detected a fast, very-high-energy (VHE, E  >  100 GeV) γ-ray flare from BL Lacertae on 2015 June 15. The flare had a maximum flux of (1.5 ± 0.3) × 10−10 photons cm−2 s−1 and halving time of 26 ± 8 min. The MAGIC observations were triggered by a high state in the optical and high-energy (HE, E  >  100 MeV) γ-ray bands. In this paper we present the MAGIC VHE γ-ray data together with multi-wavelength data from radio, optical, X-rays, and HE γ rays from 2015 May 1 to July 31. Well-sampled multi-wavelength data allow us to study the variability in detail and compare it to the other epochs when fast, VHE γ-ray flares have been detected from this source. Interestingly, we find that the behaviour in radio, optical, X-rays, and HE γ-rays is very similar to two other observed VHE γ-ray flares. In particular, also during this flare there was an indication of rotation of the optical polarization angle and of activity at the 43 GHz core. These repeating patterns indicate a connection between the three events. We also test modelling of the spectral energy distribution based on constraints from the light curves and VLBA observations, with two different geometrical setups of two-zone inverse Compton models. In addition we model the γ-ray data with the star-jet interaction model. We find that all of the tested emission models are compatible with the fast VHE γ-ray flare, but all have some tension with the multi-wavelength observations.


2016 ◽  
Vol 12 (S324) ◽  
pp. 239-240
Author(s):  
V. Fallah Ramazani ◽  
E. Lindfors ◽  
K. Nilsson

AbstractWe present the most up-to-date and complete multi-wavelength correlation analysis on luminosity properties of TeV BL Lacs. Correlation function (power law or linear) parameters are calculated based on linear regression method. Using the lower energy luminosities of a sample of 182 non-TeV BL Lacs and the generated functions, minimum level of VHE gamma-ray emission was calculated for each non-TeV BL Lacs. This multi wavelength prediction method gives us a list of best candidates to be observed with current generation of Imaging Air Cherenkov Telescopes.


2018 ◽  
Vol 27 (10) ◽  
pp. 1844007
Author(s):  
S. Gasparyan ◽  
N. Sahakyan ◽  
P. Chardonnet

The discovery of very-high-energy gamma-ray emission from Flat Spectrum Radio Quasars (FSRQs) by ground-based Cherenkov telescopes (HESS, MAGIC, VERITAS) provides a new view of blazar emission processes. The available data from multiwavelength observations of FSRQs, allow us to constrain the size (possibly also location) of the emitting region, magnetic field, electron energy distribution, etc., which are crucial for the understanding of the jet properties. We investigate the origin of emission from FSRQs (PKS 1510-089, PKS 1222+216 and 3C 279) by modeling the broadband spectral energy distribution in their quiescent and flaring states, using estimation of the parameter space that describes the underlying particle distribution responsible for the emission through the Markov Chain Monte Carlo (MCMC) technique.


Author(s):  
Marina Manganaro ◽  
Giovanna Pedaletti ◽  
Marlene Doert ◽  
Denis Bastieri ◽  
Vandad Fallah Ramazani ◽  
...  

S5 0716+714 is a well known BL-Lac object, one of the brightest and most active blazars. The discovery in the Very High Energy band (VHE, E > 100 GeV) by MAGIC happened in 2008. In January 2015 the source went through the brightest optical state ever observed, triggering MAGIC follow-up and a VHE detection with ~ sigma significance (ATel #6999). Rich multi-wavelength coverage of the flare allowed us to construct the broad-band spectral energy distribution of S5 0716+714 during its brightest outburst. In this work we will present the preliminary analysis of MAGIC and Fermi-LAT data of the flaring activity in January and February 2015 for the HE and VHE band, together with radio (Metsahovi, OVRO, VLBA, Effelsberg), sub-millimeter (SMA), optical (Tuorla, Perkins, Steward, AZT-8+ST7, LX-200, Kanata), X-ray and UV (Swift-XRT and UVOT), in the same time-window and discuss the time variability of the MWL light curves during this impressive outburst.


2018 ◽  
Vol 617 ◽  
pp. A30 ◽  
Author(s):  
◽  
M. L. Ahnen ◽  
S. Ansoldi ◽  
L. A. Antonelli ◽  
C. Arcaro ◽  
...  

Aims. The very high energy (VHE ≳100 GeV) γ-ray MAGIC observations of the blazar S4 0954+65, were triggered by an exceptionally high flux state of emission in the optical. This blazar has a disputed redshift of z = 0.368 or z ≥ 0.45 and an uncertain classification among blazar subclasses. The exceptional source state described here makes for an excellent opportunity to understand physical processes in the jet of S4 0954+65 and thus contribute to its classification. Methods. We investigated the multiwavelength (MWL) light curve and spectral energy distribution (SED) of the S4 0954+65 blazar during an enhanced state in February 2015 and have put it in context with possible emission scenarios. We collected photometric data in radio, optical, X-ray, and γ-ray. We studied both the optical polarization and the inner parsec-scale jet behavior with 43 GHz data. Results. Observations with the MAGIC telescopes led to the first detection of S4 0954+65 at VHE. Simultaneous data with Fermi-LAT at high energy γ-ray (HE, 100 MeV < E < 100 GeV) also show a period of increased activity. Imaging at 43 GHz reveals the emergence of a new feature in the radio jet in coincidence with the VHE flare. Simultaneous monitoring of the optical polarization angle reveals a rotation of approximately 100°. Conclusions. The high emission state during the flare allows us to compile the simultaneous broadband SED and to characterize it in the scope of blazar jet emission models. The broadband spectrum can be modeled with an emission mechanism commonly invoked for flat spectrum radio quasars (FSRQs), that is, inverse Compton scattering on an external soft photon fieldfrom the dust torus, also known as external Compton. The light curve and SED phenomenology is consistent with an interpretation of a blob propagating through a helical structured magnetic field and eventually crossing a standing shock in the jet, a scenario typically applied to FSRQs and low-frequency peaked BL Lac objects (LBL).


2017 ◽  
Vol 12 (S331) ◽  
pp. 201-205
Author(s):  
A. J. Nayana ◽  
Poonam Chandra

AbstractHESS J1731−347 a.k.a. SNR G353.6−0.7 is one of the five known very high energy (VHE, Energy > 0.1 TeV) shell-type supernova remnants. We carried out Giant Metrewave Radio Telescope (GMRT) observations of this TeV SNR in 1390, 610 and 325 MHz bands. We detected the 325 and 610 MHz radio counterparts of the SNR G353.6−0.7 (Nayana et al. 2017). We also determined the spectral indices of individual filaments and our values are consistent with the non-thermal radio emission. We compared the radio morphology with that of VHE emission. The peak in radio emission corresponds to the faintest feature in the VHE emission. We explain this anti-correlated emission in a possible leptonic origin of the VHE γ-rays.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 421
Author(s):  
Mathieu de Naurois

Thirty years after the discovery of the first very-high-energy γ-ray source by the Whipple telescope, the field experienced a revolution mainly driven by the third generation of imaging atmospheric Cherenkov telescopes (IACTs). The combined use of large mirrors and the invention of the imaging technique at the Whipple telescope, stereoscopic observations, developed by the HEGRA array and the fine-grained camera, pioneered by the CAT telescope, led to a jump by a factor of more than ten in sensitivity. The advent of advanced analysis techniques led to a vast improvement in background rejection, as well as in angular and energy resolutions. Recent instruments already have to deal with a very large amount of data (petabytes), containing a large number of sources often very extended (at least within the Galactic plane) and overlapping each other, and the situation will become even more dramatic with future instruments. The first large catalogues of sources have emerged during the last decade, which required numerous, dedicated observations and developments, but also made the first population studies possible. This paper is an attempt to summarize the evolution of the field towards the building up of the source catalogues, to describe the first population studies already made possible, and to give some perspectives in the context of the upcoming, new generation of instruments.


2003 ◽  
Vol 214 ◽  
pp. 331-332
Author(s):  
Zhuo Li ◽  
Z. G. Dai ◽  
T. Lu

Gamma-ray bursts (GRBs) are believed to originate from ultra-relativistic fireballs, with initial Lorentz factor η ∼ 102 − 103. However very high energy photons may still suffer from γγ interaction. We show here that in a wide range of model parameters, the resulting pairs may dominate electrons associated with the fireball baryons. This may provide an explanation for the rarity of prompt optical detections. A rapid response to the GRB trigger at the IR band would detect such a strong flash.


Sign in / Sign up

Export Citation Format

Share Document