scholarly journals The Lyman Alpha Reference Sample

2020 ◽  
Vol 644 ◽  
pp. A10
Author(s):  
J. Puschnig ◽  
M. Hayes ◽  
G. Östlin ◽  
J. Cannon ◽  
I. Smirnova-Pinchukova ◽  
...  

Context. Lyman-α (Lyα) is the brightest emission line in star-forming galaxies. However, its interpretation in terms of physical properties is hampered by the resonant nature of Lyα photons. In order to remedy this complicated situation, the Lyman Alpha Reference Sample (LARS) was defined, enabling the study of Lyα production and escape mechanisms in 14 local star-forming galaxies. Aims. With this paper, we complement our efforts and study the global dust and (molecular) gas content as well as the properties of gas associated with photon-dominated regions. We aim to characterize the interstellar medium of LARS galaxies, allowing us to relate these newly derived properties to quantities relevant for Lyα escape. Methods. We observed LARS galaxies with Herschel, SOFIA, the IRAM 30m telescope, and APEX, targeting far-infrared (FIR) continuum and emission lines of [C II]158 μm, [O I]63 μm, [O III]88 μm, and low-J CO lines. Using Bayesian methods we derived dust model parameters and estimated the total gas masses for all LARS galaxies, taking into account a metallicity-dependent gas-to-dust ratio. Star formation rates were estimated from FIR, [C II]158 μm, and [O I]63 μm luminosities. Results. LARS covers a wide dynamic range in the derived properties, with FIR-based star formation rates from ∼0.5−100 M⊙ yr−1, gas fractions between ∼15−80%, and gas depletion times ranging from a few hundred megayears up to more than ten gigayears. The distribution of LARS galaxies in the Σgas versus ΣSFR (Kennicutt–Schmidt plane) is thus quite heterogeneous. However, we find that LARS galaxies with the longest gas depletion times, that is, relatively high gas surface densities (Σgas) and low star formation rate densities (ΣSFR), have by far the highest Lyα escape fraction. A strong approximately linear relation is found between the Lyα escape fraction and the total gas (HI+H2) depletion time. We argue that the Lyα escape in those galaxies is driven by turbulence in the star-forming gas that shifts the Lyα photons out of resonance close to the places where they originate. We further report on an extreme [C II]158 μm excess in LARS 5, corresponding to ∼14 ± 3% of the FIR luminosity, which probably is the most extreme [C II]-to-FIR ratio observed in a galaxy (without active nucleus) to date.

2019 ◽  
Vol 624 ◽  
pp. A98 ◽  
Author(s):  
L. Wang ◽  
W. J. Pearson ◽  
W. Cowley ◽  
J. W. Trayford ◽  
M. Béthermin ◽  
...  

Aims. We study the statistical properties of dusty star-forming galaxies across cosmic time, such as their number counts, luminosity functions (LF), and the dust-obscured star formation rate density (SFRD). Methods. We used the most recent de-blended Herschel catalogue in the COSMOS field to measure the number counts and LFs at far-infrared (FIR) and sub-millimetre (sub-mm) wavelengths. The de-blended catalogue was generated by combining the Bayesian source extraction tool XID+ and an informative prior derived from the associated deep multi-wavelength photometric data. Results. Through our de-confusion technique and based on the deep multi-wavelength photometric information, we are able to achieve more accurate measurements while at the same time probing roughly ten times below the Herschel confusion limit. Our number counts at 250 μm agree well with previous Herschel studies. However, our counts at 350 and 500 μm are below previous Herschel results because previous Herschel studies suffered from source confusion and blending issues. Our number counts at 450 and 870 μm show excellent agreement with previous determinations derived from single-dish and interferometric observations. Our measurements of the LF at 250 μm and the total IR LF agree well with previous results in the overlapping redshift and luminosity range. The increased dynamic range of our measurements allows us to better measure the faint-end of the LF and measure the dust-obscured SFRD out to z ∼ 6. We find that the fraction of obscured star formation activity is at its highest (>80%) around z ∼ 1. We do not find a shift of balance between z ∼ 3 and z ∼ 4 in the SFRD from being dominated by unobscured star formation at higher redshift to obscured star formation at lower redshift. However, we do find 3 <  z <  4 to be an interesting transition period as the portion of the total SFRD that is obscured by dust is significantly lower at higher redshifts.


1987 ◽  
Vol 115 ◽  
pp. 647-647
Author(s):  
U. Klein ◽  
J. Heidmann ◽  
R. Wielebinski ◽  
E. Wunderlich

The four clumpy irregular galaxies Mkr 8, 296,297 and 325 have been observed by IRAS. All galaxies have been detected in at least two of the four detector bands. The ratios of the 100 to 60-m flux densities are comparable to those of HII regions or violently star forming galaxies. The average star formation rate in clumpy irregular galaxies is of the order of a few solar masses per year (based on their average far-infrared luminosity and a Hubble constant of 75 km s−1 Mpc−1.


2020 ◽  
Vol 493 (2) ◽  
pp. 1982-1995 ◽  
Author(s):  
Steven Janowiecki ◽  
Barbara Catinella ◽  
Luca Cortese ◽  
Amelie Saintonge ◽  
Jing Wang

ABSTRACT We use H i and H2 global gas measurements of galaxies from xGASS and xCOLD GASS to investigate quenching paths of galaxies below the Star forming main sequence (SFMS). We show that the population of galaxies below the SFMS is not a 1:1 match with the population of galaxies below the H i and H2 gas fraction scaling relations. Some galaxies in the transition zone (TZ) 1σ below the SFMS can be as H i-rich as those in the SFMS, and have on average longer gas depletion time-scales. We find evidence for environmental quenching of satellites, but central galaxies in the TZ defy simple quenching pathways. Some of these so-called ‘quenched’ galaxies may still have significant gas reservoirs and be unlikely to deplete them any time soon. As such, a correct model of galaxy quenching cannot be inferred with star formation rate (or other optical observables) alone, but must include observations of the cold gas. We also find that internal structure (particularly, the spatial distribution of old and young stellar populations) plays a significant role in regulating the star formation of gas-rich isolated TZ galaxies, suggesting the importance of bulges in their evolution.


2013 ◽  
Vol 9 (S304) ◽  
pp. 302-306
Author(s):  
Chien-Ting J. Chen ◽  
Ryan C. Hickox

AbstractWe present the results of recent studies on the co-evolution of galaxies and the supermassive black holes (SMBHs) using Herschel far-infrared and Chandra X-ray observations in the Boötes survey region. For a sample of star-forming (SF) galaxies, we find a strong correlation between galactic star formation rate and the average SMBH accretion rate in SF galaxies. Recent studies have shown that star formation and AGN accretion are only weakly correlated for individual AGN, but this may be due to the short variability timescale of AGN relative to star formation. Averaging over the full AGN population yields a strong linear correlation between accretion and star formation, consistent with a simple picture in which the growth of SMBHs and their host galaxies are closely linked over galaxy evolution time scales.


2018 ◽  
Vol 619 ◽  
pp. A15 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
J. Richard ◽  
K. Nakajima ◽  
...  

Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.


2019 ◽  
Vol 622 ◽  
pp. A105 ◽  
Author(s):  
J. Freundlich ◽  
F. Combes ◽  
L. J. Tacconi ◽  
R. Genzel ◽  
S. Garcia-Burillo ◽  
...  

Following the success of the Plateau de Bure high-z Blue Sequence Survey (PHIBSS), we present the PHIBSS2 legacy program, a survey of the molecular gas properties of star-forming galaxies on and around the star-formation main sequence (MS) at different redshifts using IRAM’s NOrthern Extended Millimeter Array (NOEMA). This survey significantly extends the existing sample of star-forming galaxies with CO molecular gas measurements, probing the peak epoch of star formation (z = 1 − 1.6) as well as its building-up (z = 2 − 3) and winding-down (z = 0.5 − 0.8) phases. The targets are drawn from the well-studied GOODS, COSMOS, and AEGIS cosmological deep fields and uniformly sample the MS in the stellar mass (M⋆) – star formation rate (SFR) plane with log(M⋆/M⊙) = 10 − 11.8 and SFR = 3.5 − 500 M⊙ yr−1 without morphological selection, thus providing a statistically meaningful census of star-forming galaxies at different epochs. We describe the survey strategy and sample selection before focusing on the results obtained at redshift z = 0.5 − 0.8, where we report 60 CO(2-1) detections out of 61 targets. We determine molecular gas masses between 2 × 109 and 5 × 1010 M⊙ and separately obtain disc sizes and bulge-to-total (B/T) luminosity ratios from HST I-band images. The median molecular gas-to-stellar mass ratio μgas∼ = 0.28 ± 0.04, gas fraction fgas∼ = 0.22 ± 0.02, and depletion time $ \widetilde{t_{\mathrm{depl}}} = 0.84 \pm 0.07\,\mathrm{Gyr} $ as well as their dependence with stellar mass and offset from the MS follow published scaling relations for a much larger sample of galaxies spanning a significantly wider range of redshifts, the cosmic evolution of the SFR being mainly driven by that of the molecular gas fraction. The galaxy-averaged molecular Kennicutt–Schmidt (KS) relation between molecular gas and SFR surface densities is strikingly linear, pointing towards similar star formation timescales within galaxies at any given epoch. In terms of morphology, the molecular gas content, the SFR, the disc stellar mass, and the disc molecular gas fraction do not seem to correlate with B/T and the stellar surface density, which suggests an ongoing supply of fresh molecular gas to compensate for the build-up of the bulge. Our measurements do not yield any significant variation of the depletion time with B/T and hence no strong evidence for morphological quenching within the scatter of the MS.


2019 ◽  
Vol 487 (3) ◽  
pp. 4238-4260 ◽  
Author(s):  
Matteo Messa ◽  
Angela Adamo ◽  
Göran Östlin ◽  
Jens Melinder ◽  
Matthew Hayes ◽  
...  

ABSTRACT We study young star-forming clumps on physical scales of 10–500 pc in the Lyman-Alpha Reference Sample (LARS), a collection of low-redshift (z = 0.03–0.2) UV-selected star-forming galaxies. In each of the 14 galaxies of the sample, we detect clumps for which we derive sizes and magnitudes in five UV-optical filters. The final sample includes ∼1400 clumps, of which ∼600 have magnitude uncertainties below 0.3 in all filters. The UV luminosity function for the total sample of clumps is described by a power law with slope $\alpha =-2.03^{+0.11}_{-0.13}$. Clumps in the LARS galaxies have on average ΣSFR values higher than what is observed in H ii regions of local galaxies and comparable to typical star formation rate (SFR) densities of clumps in z = 1–3 galaxies. We derive the clumpiness as the relative contribution from clumps to the UV emission of each galaxy, and study it as a function of galactic-scale properties, i.e. ΣSFR and the ratio between rotational and dispersion velocities of the gas (vs/σ0). We find that in galaxies with higher ΣSFR or lower vs/σ0, clumps dominate the UV emission of their host systems. All LARS galaxies with Ly α escape fractions larger than 10% have more than 50% of the UV luminosity from clumps. We tested the robustness of these results against the effect of different physical resolutions. At low resolution, the measured clumpiness appears more elevated than if we could resolve clumps down to single clusters. This effect is small in the redshift range covered by LARS; thus, our results are not driven by the physical resolution.


2013 ◽  
Vol 9 (S304) ◽  
pp. 343-344
Author(s):  
M. Bonzini ◽  
V. Mainieri ◽  
P. Padovani ◽  
K. I. Kellermann ◽  
N. Miller ◽  
...  

AbstractWith the goal of investigating the link between black hole (BH) and star formation (SF) activity, we study a deep sample of radio selected star forming galaxies (SFGs) and active galactic nuclei (AGNs). Using a multi-wavelength approach we characterize their host galaxies properties (stellar masses, optical colors, and morphology). Moreover, comparing the star formation rate derived from the radio and far-infrared luminosity, we found evidences that the main contribution to the radio emission in the radio-quiet AGNs is star-formation activity in their host galaxy.


2019 ◽  
Vol 631 ◽  
pp. A109 ◽  
Author(s):  
L. Wang ◽  
F. Gao ◽  
K. J. Duncan ◽  
W. L. Williams ◽  
M. Rowan-Robinson ◽  
...  

Aims. We aim to study the far-infrared radio correlation (FIRC) at 150 MHz in the local Universe (at a median redshift ⟨z⟩∼0.05) and improve the use of the rest-frame 150 MHz luminosity, L150, as a star-formation rate (SFR) tracer, which is unaffected by dust extinction. Methods. We cross-match the 60 μm selected Revised IRAS Faint Source Survey Redshift (RIFSCz) catalogue and the 150 MHz selected LOFAR value-added source catalogue in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) Spring Field. We estimate L150 for the cross-matched sources and compare it with the total infrared (IR) luminosity, LIR, and various SFR tracers. Results. We find a tight linear correlation between log L150 and log LIR for star-forming galaxies, with a slope of 1.37. The median qIR value (defined as the logarithm of the LIR to L150 ratio) and its rms scatter of our main sample are 2.14 and 0.34, respectively. We also find that log L150 correlates tightly with the logarithm of SFR derived from three different tracers, i.e., SFRHα based on the Hα line luminosity, SFR60 based on the rest-frame 60 μm luminosity and SFRIR based on LIR, with a scatter of 0.3 dex. Our best-fit relations between L150 and these SFR tracers are, log L150 (L⊙) = 1.35(±0.06) × log SFRHα (M⊙ yr−1) + 3.20(±0.06), log L150 (L⊙) = 1.31(±0.05) × log SFR60 (M⊙ yr−1) + 3.14(±0.06), and log L150 (L⊙) = 1.37 (±0.05) × log SFRIR (M⊙ yr−1) + 3.09(±0.05), which show excellent agreement with each other.


2017 ◽  
Vol 608 ◽  
pp. A48 ◽  
Author(s):  
H. Dannerbauer ◽  
M. D. Lehnert ◽  
B. Emonts ◽  
B. Ziegler ◽  
B. Altieri ◽  
...  

It is not yet known if the properties of molecular gas in distant protocluster galaxies are significantly affected by their environment as galaxies are in local clusters. Through a deep, 64 h of effective on-source integration with the Australian Telescope Compact Array (ATCA), we discovered a massive, Mmol = 2.0 ± 0.2× 1011 M⊙, extended, ~40 kpc, CO(1–0)-emitting disk in the protocluster surrounding the radio galaxy, MRC 1138−262. The galaxy, at zCO = 2.1478, is a clumpy, massive disk galaxy, M∗ ~ 5 × 1011 M⊙, which lies 250 kpc in projection from MRC 1138−262 and is a known Hα emitter, named HAE229. This source has a molecular gas fraction of ~30%. The CO emission has a kinematic gradient along its major axis, centered on the highest surface brightness rest-frame optical emission, consistent with HAE229 being a rotating disk. Surprisingly, a significant fraction of the CO emission lies outside of the UV/optical emission. In spite of this, HAE229 follows the same relation between star-formation rate and molecular gas mass as normal field galaxies. HAE229 is the first CO(1–0) detection of an ordinary, star-forming galaxy in a protocluster. We compare a sample of cluster members at z > 0.4 thatare detected in low-order CO transitions, with a similar sample of sources drawn from the field. We confirm findings that the CO-luminosity and full-width at half maximum are correlated in starbursts and show that this relation is valid for normal high-z galaxies as well as for those in overdensities. We do not find a clear dichotomy in the integrated Schmidt-Kennicutt relation for protocluster and field galaxies. Our results suggest that environment does not have an impact on the “star-formation efficiency” or the molecular gas content of high-redshift galaxies. Not finding any environmental dependence in these characteristics, especially for such an extended CO disk, suggests that environmentally-specific processes such as ram pressure stripping do not operate efficiently in (proto)clusters.


Sign in / Sign up

Export Citation Format

Share Document