scholarly journals JoXSZ: Joint X-SZ fitting code for galaxy clusters

2020 ◽  
Vol 639 ◽  
pp. A73 ◽  
Author(s):  
Fabio Castagna ◽  
Stefano Andreon

The thermal Sunyaev-Zeldovich (SZ) effect and the X-ray emission offer separate and highly complementary probes of the thermodynamics of the intracluster medium. We present JoXSZ, the first publicly available code designed to jointly fit SZ and X-ray data coming from various instruments to derive the thermodynamic profiles of galaxy clusters. JoXSZ follows a fully Bayesian forward-modelling approach, accounts for the SZ calibration uncertainty, and for the X-ray background level systematic. It improves upon most current and not publicly available analyses because it adopts the correct Poisson-Gauss expression for the joint likelihood, makes full use of the information contained in the observations, even in the case of missing values within the datasets, has a more inclusive error budget, and adopts a consistent temperature in the various parts of the code, allowing for differences between X-ray and SZ gas-mass weighted temperatures when required by the user. JoXSZ accounts for beam smearing and data analysis transfer function, accounts for the temperature and metallicity dependencies of the SZ and X-ray conversion factors, adopts flexible parametrisation for the thermodynamic profiles, and on user request, allows either adopting or relaxing the assumption of hydrostatic equilibrium (HE). When HE holds, JoXSZ uses a physical (positive) prior on the radial derivative of the enclosed mass and derives the mass profile and overdensity radii rΔ. For these reasons, JoXSZ goes beyond simple SZ and electron density fits. We illustrate the use of JoXSZ by combining Chandra and NIKA data of the high-redshift cluster CL J1226.9+3332. The code is written in Python, it is fully documented, and the users are free to customise their analysis in accordance with their needs and requirements. JoXSZ is publicly available on GitHub.

Author(s):  
Anthony M Flores ◽  
Adam B Mantz ◽  
Steven W Allen ◽  
R Glenn Morris ◽  
Rebecca E A Canning ◽  
...  

Abstract We present the analysis of deep X-ray observations of 10 massive galaxy clusters at redshifts 1.05 < z < 1.71, with the primary goal of measuring the metallicity of the intracluster medium (ICM) at intermediate radii, to better constrain models of the metal enrichment of the intergalactic medium. The targets were selected from X-ray and Sunyaev-Zel’dovich (SZ) effect surveys, and observed with both the XMM-Newton and Chandra satellites. For each cluster, a precise gas mass profile was extracted, from which the value of r500 could be estimated. This allows us to define consistent radial ranges over which the metallicity measurements can be compared. In general, the data are of sufficient quality to extract meaningful metallicity measurements in two radial bins, r < 0.3r500 and 0.3 < r/r500 < 1.0. For the outer bin, the combined measurement for all ten clusters, Z/Z⊙ = 0.21 ± 0.09, represents a substantial improvement in precision over previous results. This measurement is consistent with, but slightly lower than, the average metallicity of 0.315 Solar measured at intermediate-to-large radii in low-redshift clusters. Combining our new high-redshift data with the previous low-redshift results allows us to place the tightest constraints to date on models of the evolution of cluster metallicity at intermediate radii. Adopting a power law model of the form Z∝(1 + z)γ, we measure a slope $\gamma = -0.5^{+0.4}_{-0.3}$, consistent with the majority of the enrichment of the ICM having occurred at very early times and before massive clusters formed, but leaving open the possibility that some additional enrichment in these regions may have occurred since a redshift of 2.


2007 ◽  
Vol 472 (3) ◽  
pp. 739-748 ◽  
Author(s):  
M. Branchesi ◽  
I. M. Gioia ◽  
C. Fanti ◽  
R. Fanti
Keyword(s):  

2018 ◽  
Vol 14 (S342) ◽  
pp. 145-148
Author(s):  
Elias Koulouridis ◽  

AbstractWe present the results of a study of the AGN density in a homogeneous and well studied sample of 167 bona-fide X-ray galaxy clusters (0.1<z<0.5). Our aim is to study the AGN activity in 167 XXL X-ray galaxy clusters as a function of the cluster mass and the location of the AGN in the cluster. We report a significant AGN excess in our low-mass cluster sub-sample between 0.5r500 and 2r500. In contrast, the high-mass sub-sample presents no AGN excess. The AGN excess in poor clusters indicates AGN triggering, supporting previous studies that reported enhanced galaxy merging in the cluster outskirts. This effect is probably prevented by high velocity dispersions in high-mass clusters. Comparing also with previous studies of massive or high-redshift clusters, we conclude that the AGN fraction in cluster galaxies anti-correlates strongly with cluster mass.


1989 ◽  
Vol 134 ◽  
pp. 161-166
Author(s):  
Claude R. Canizares ◽  
Julia L. White

We present mean spectral parameters for various ensembles of quasars observed with the Einstein Observatory Imaging Proportional Counter (IPC). Our sample contains 71 optically or radio selected quasars with 0.1 < z < 3.5, Galactic NH < 1021 cm−2, total counts of 30 −500, and IPC gain < 19. Quasars are grouped into ensembles according to radio properties (Flat Radio Spectrum [FRS], Steep Radio Spectrum [SRS] or Radio Quiet [RQ]), and either redshift or X-ray luminosity, lx. We find a clear correlation between radio properties and α. FRS quasars have α∼0.4, SRS quasars have α∼0.7 and RQ quasars have α ∼1–1.4. There is no evidence for a dependence of α on z nor, for the FRS and SRS ensembles, on lx over nearly three decades. FRS quasars with 2.0 < z < 3.5 have just as flat mean spectra as those with low z, implying that a single power law, which is flatter than the canonical one with α ∼ 0.65, continues into the 1–10 keV band (in which the observed softer X-rays were emitted). Unfortunately, the results for high redshift and high lx RQ quasars are ambiguous because of systematic uncertainties in the ensemble means. Thus we cannot test the two-component spectral hypothesis of Wilkes and Elvis for these objects. SRS X-ray spectra could be steeper than FRS spectra because of the mixing of two components, although a single intrinsically steeper spectrum is easier to reconcile with the absence of z dependence. The uncertainty in a for RQ quasars with high z leaves open the important question of their contribution to the cosmic X-ray background.


1990 ◽  
Vol 139 ◽  
pp. 333-343 ◽  
Author(s):  
G. De Zotti ◽  
L. Danese ◽  
L. Toffolatti ◽  
A. Franceschini

We review the data on the spectrum and isotropy of the microwave background radiation and the astrophysical processes that may produce spectral distortions and anisotropies. As yet no fully satisfactory explanation has been found for the submillimeter excess observed by Matsumoto et al. (1988). The most precise data at λ > 1 mm disagree with nonrelativistic comptonization models which match the excess. Distortions produced by a very hot intergalactic medium yielding the X-ray background do not fit the submillimeter data. Very special requirements must be met for the interpretation in terms of high-redshift dust emission to work.Reported anisotropies on scales of several degrees and of tens of arcsec may be produced, at least in part, by discrete sources. Because the best experiments at cm wavelengths are close to the confusion limit, they provide interesting information on the large-scale distribution of radio sources.


2000 ◽  
Vol 315 (4) ◽  
pp. 669-678 ◽  
Author(s):  
B. W. Fairley ◽  
L. R. Jones ◽  
C. Scharf ◽  
H. Ebeling ◽  
E. Perlman ◽  
...  

2007 ◽  
Vol 472 (3) ◽  
pp. 727-737 ◽  
Author(s):  
M. Branchesi ◽  
I. M. Gioia ◽  
C. Fanti ◽  
R. Fanti
Keyword(s):  

2013 ◽  
Vol 9 (S304) ◽  
pp. 139-139
Author(s):  
Eugenio Bottacini

AbstractCurrent most sensitive surveys at soft X-ray (~ 0.5–10 keV) energies by Chandra and XMM-Newton preferably sample AGN at high-redshift (z > 0.5). At low-redshift (z < 0.5), where AGN are supposed to be in their evolution end-stage, these sources are very sparsely sampled. The low-redshift universe is best fathomed at hard X–ray energies (> 15 keV) by the INTEGRAL and the Swift missions with their coded-mask telescopes IBIS/ISGRI and BAT respectively. These instruments have two major advantages: 1) they have a huge field of view, hence allowing to sample a large number of AGN at low-redshift; 2) they operate at energies above 15 keV, hence allowing detecting photons with enough power to efficiently pierce even through the Compton-thick torus of AGN. Estimates based on observations with PDS on board the BeppoSAX satellite predict that Compton-thick AGN should dominate over unabsorbed AGN in the local universe playing an important role in reproducing the shape and intensity of the cosmic X-ray background (CXB). However coded-mask detectors suffer from heavy systematic effects preventing them from reaching their theoretical limiting sensitivity. We overcome this limit with a new and alternative approach, which has been designed ad hoc to improve the sensitivity of hard X–ray surveys by using IBIS/ISGRI and BAT. Both telescopes are so close in design that their observations can be combined to obtain a more sensitive survey. The observations are combined with resampling, merging, and cross-calibration techniques. We are able to sample limiting fluxes of the order of ~3.3 times 10−12 erg cm−2 s−1 in the 18–55 keV energy range. This is called the SIX survey, that stands for Swift-INTEGRAL X-ray survey. The SIX survey extends over a wide sky area of 6200 deg2 and it is used to obtain a persistent sample of faint AGN. The source number density (log N - log S) is a factor of 3 better than current parent surveys of BAT and IBIS/ISGRI alone. I will present a study of the evolution of AGN in the local universe discussing the X-ray luminosity function. The properties of the AGN circum-nuclear environment will be discussed checking the consistency with the AGN unification scheme. Also I will compare the results from the SIX survey to the results predicted for the NuSTAR survey. Finally preliminary results of the all-sky SIX survey are presented.


Sign in / Sign up

Export Citation Format

Share Document