scholarly journals Variability of OB stars from TESS southern Sectors 1–13 and high-resolution IACOB and OWN spectroscopy

2020 ◽  
Vol 639 ◽  
pp. A81 ◽  
Author(s):  
S. Burssens ◽  
S. Simón-Díaz ◽  
D. M. Bowman ◽  
G. Holgado ◽  
M. Michielsen ◽  
...  

Context. The lack of high-precision long-term continuous photometric data for large samples of stars has impeded the large-scale exploration of pulsational variability in the OB star regime. As a result, the candidates for in-depth asteroseismic modelling have remained limited to a few dozen dwarfs. The TESS nominal space mission has surveyed the southern sky, including parts of the galactic plane, yielding continuous data across at least 27 d for hundreds of OB stars. Aims. We aim to couple TESS data in the southern sky with ground-based spectroscopy to study the variability in two dimensions, mass and evolution. We focus mainly on the presence of coherent pulsation modes that may or may not be present in the predicted theoretical instability domains and unravel all frequency behaviour in the amplitude spectra of the TESS data. Methods. We compose a sample of 98 OB-type stars observed by TESS in Sectors 1–13 and with available multi-epoch, high-resolution spectroscopy gathered by the IACOB and OWN surveys. We present the short-cadence 2 min light curves of dozens of OB-type stars, which have one or more spectra in the IACOB or OWN database. Based on these light curves and their Lomb–Scargle periodograms, we performed variability classification and frequency analysis. We placed the stars in the spectroscopic Hertzsprung–Russell diagram to interpret the variability in an evolutionary context. Results. We deduce the diverse origins of the mmag-level variability found in all of the 98 OB stars in the TESS data. We find among the sample several new variable stars, including three hybrid pulsators, three eclipsing binaries, high frequency modes in a Be star, and potential heat-driven pulsations in two Oe stars. Conclusions. We identify stars for which future asteroseismic modelling is possible, provided mode identification is achieved. By comparing the position of the variables to theoretical instability strips, we discuss the current shortcomings in non-adiabatic pulsation theory and the distribution of pulsators in the upper Hertzsprung–Russell diagram.

2004 ◽  
Vol 202 ◽  
pp. 69-71
Author(s):  
Douglas A. Caldwell ◽  
W. J. Borucki ◽  
J. M. Jenkins ◽  
D. G. Koch ◽  
L. Webster ◽  
...  

The NASA Ames Research Center's Vulcan photometer is being used in a search for close–in giant extrasolar planets. With our current data reduction system we achieve 0.2–0.8% hour–to–hour relative photometric precision on ∽ 6000 stars brighter than 13th magnitude. Three Galactic-plane fields have so far yielded hundreds of variable stars, including ∽ 50 eclipsing or interacting binaries per field. Several candidate detections have been followed up with radial velocity observations. High-resolution spectroscopy revealed many of the strongest candidates to be grazing eclipsing binaries.


2021 ◽  
Vol 502 (1) ◽  
pp. 1299-1311
Author(s):  
Heidi B Thiemann ◽  
Andrew J Norton ◽  
Hugh J Dickinson ◽  
Adam McMaster ◽  
Ulrich C Kolb

ABSTRACT We present the first analysis of results from the SuperWASP variable stars Zooniverse project, which is aiming to classify 1.6 million phase-folded light curves of candidate stellar variables observed by the SuperWASP all sky survey with periods detected in the SuperWASP periodicity catalogue. The resultant data set currently contains >1 million classifications corresponding to >500 000 object–period combinations, provided by citizen–scientist volunteers. Volunteer-classified light curves have ∼89 per cent accuracy for detached and semidetached eclipsing binaries, but only ∼9 per cent accuracy for rotationally modulated variables, based on known objects. We demonstrate that this Zooniverse project will be valuable for both population studies of individual variable types and the identification of stellar variables for follow-up. We present preliminary findings on various unique and extreme variables in this analysis, including long-period contact binaries and binaries near the short-period cut-off, and we identify 301 previously unknown binaries and pulsators. We are now in the process of developing a web portal to enable other researchers to access the outputs of the SuperWASP variable stars project.


2018 ◽  
Vol 617 ◽  
pp. A32 ◽  
Author(s):  
O. Burggraaff ◽  
G. J. J. Talens ◽  
J. Spronck ◽  
A.-L. Lesage ◽  
R. Stuik ◽  
...  

Context. The Multi-site All-Sky CAmeRA (MASCARA) aims to find the brightest transiting planet systems by monitoring the full sky at magnitudes 4 < V < 8.4, taking data every 6.4 s. The northern station has been operational on La Palma since February 2015. These data can also be used for other scientific purposes, such as the study of variable stars. Aims. In this paper we aim to assess the value of MASCARA data for studying variable stars by determining to what extent known variable stars can be recovered and characterised, and how well new, unknown variables can be discovered. Methods. We used the first 14 months of MASCARA data, consisting of the light curves of 53 401 stars with up to one million flux points per object. All stars were cross-matched with the VSX catalogue to identify known variables. The MASCARA light curves were searched for periodic flux variability using generalised Lomb–Scargle periodograms. If significant variability of a known variable was detected, the found period and amplitude were compared with those listed in the VSX database. If no previous record of variability was found, the data were phase folded to attempt a classification. Results. Of the 1919 known variable stars in the MASCARA sample with periods 0.1 < P < 10 days, amplitudes >2%, and that have more than 80 h of data, 93.5% are recovered. In addition, the periods of 210 stars without a previous VSX record were determined, and 282 candidate variable stars were newly identified. We also investigated whether second order variability effects could be identified. The O’Connell effect is seen in seven eclipsing binaries, of which two have no previous record of this effect. Conclusions. MASCARA data are very well suited to study known variable stars. They also serve as a powerful means to find new variables among the brightest stars in the sky. Follow-up is required to ensure that the observed variability does not originate from faint background objects.


1990 ◽  
Vol 137 ◽  
pp. 219-220
Author(s):  
P.P. Petrov

Ejection and accretion of gas clouds in the vicinity of RY Tau were discovered. The existense of large scale “stellar prominences” around young stars is suggested.


1984 ◽  
Vol 80 ◽  
pp. 387-392
Author(s):  
H. J. Schober

AbstractSince about ten years coordinated programs of photoelectric observations of asteroids are carried out to derive rotation rates and light curves. Quite a number of those asteroids exhibit features in their light curves, with similar characteristics as variable stars and especially eclipsing binaries. This would allow also an interpretation that there might be an evidence for the binary nature of some asteroids, based on observational hints. A few examples are given and a list of indications for the possible binary nature of asteroids, based on their light curve features, is presented.


1991 ◽  
Vol 148 ◽  
pp. 381-381
Author(s):  
William Tobin ◽  
A. C. Gilmore ◽  
Alan Wadsworth ◽  
S.R.D. West

Late in 1988 the Mt John University Observatory acquired a cryogenic CCD system from Photometrics Ltd (Tucson). The chip is a Thomson CSF TH7882 CDA comprising 384 × 576 pixels. As part of the evaluation process, we have begun two differential photometry programs of the Magellanic Clouds using the Mt John 0.6m Boller & Chivens telescope. On this telescope each CCD pixel corresponds to 0.6 arcsec. Mt John's southerly latitude (44°S) permits year-round observations of the Clouds.The first program concerns B, V and I photometry of five blue eclipsing binaries selected, on the basis of Gaposchkin's (1970, 1977) photographic light curves, to have roughly equal components with minimal interaction. HV 12634 has also been observed for comparison with the CCD light curves published by Jensen et al. (1988). Fig. 1 shows the B observations so far obtained for HV 1761, but the reduction is preliminary, being based on aperture-integrated magnitudes. The field is populous, and a final reduction will require use of a crowded-field reduction package such as ROMAFOT.


2008 ◽  
Vol 4 (S253) ◽  
pp. 129-139 ◽  
Author(s):  
François Bouchy ◽  
Claire Moutou ◽  
Didier Queloz ◽  

AbstractRadial Velocity follow-up is essential to establish or exclude the planetary nature of a transiting companion as well as to accurately determine its mass. Here we present some elements of an efficient Doppler follow-up strategy, based on high-resolution spectroscopy, devoted to the characterization of transiting candidates. Some aspects and results of the radial velocity follow-up of the CoRoT space mission are presented in order to illustrate the strategy used to deal with the zoo of transiting candidates.


2011 ◽  
Vol 7 (S282) ◽  
pp. 391-394 ◽  
Author(s):  
Zdeněk Mikulášek ◽  
Miloslav Zejda ◽  
Jan Janík

AbstractWe present a versatile method appropriate for the period analyses of observations containing phase information of all kinds of periodic or nearly periodic variable stars on the basis of phenomenological modelling of their phase curves and phase functions. The approach is based on rigorous application of a non-linear weighted least-squares method exploiting all available observational data and does not need an O-C diagram as an intermediate stage for period analyses. However, this approach enables us to determine precise times of extrema of light curves, to calculate ephemerides and construct plausible O-C diagrams. We substantiate the general applicability of the method on eclipsing binaries research.


1994 ◽  
Vol 162 ◽  
pp. 27-28
Author(s):  
C. Waelkens ◽  
H. Van Winckel ◽  
K. de Mey

We give a progress report on an observational program intended to determine detailed chemical abundances of β Cephei stars and constant stars with similar temperature and gravity. There is some evidence that non-variable stars have a lower metal content than variables, as the recently found pulsation mechanism would suggest.


2019 ◽  
Vol 28 (10) ◽  
pp. 1950125
Author(s):  
Slava G. Turyshev ◽  
Michael Shao ◽  
Viktor T. Toth

The remarkable optical properties of the solar gravitational lens (SGL) include major brightness amplification ([Formula: see text] on the optical axis, at a wavelength of [Formula: see text]m) and extreme angular resolution ([Formula: see text][Formula: see text]arcsec). A deep space mission equipped with a modest telescope and coronagraph, traveling to the focal area of the SGL that begins at [Formula: see text] astronomical units (AU) from the Sun, offers an opportunity for direct megapixel imaging and high-resolution spectroscopy of a habitable Earth-like exoplanet. We present a basic overview of this intriguing opportunity.


Sign in / Sign up

Export Citation Format

Share Document