scholarly journals Comparing the reflectivity of ungrouped carbonaceous chondrites with those of short-period comets like 2P/Encke

2020 ◽  
Vol 641 ◽  
pp. A58
Author(s):  
Safoura Tanbakouei ◽  
Josep M. Trigo-Rodríguez ◽  
Jürgen Blum ◽  
Iwan Williams ◽  
Jordi Llorca

Aims. The existence of asteroid complexes produced by the disruption of these comets suggests that evolved comets could also produce high-strength materials able to survive as meteorites. We chose as an example comet 2P/Encke, one of the largest object of the so-called Taurid complex. We compare the reflectance spectrum of this comet with the laboratory spectra of some Antarctic ungrouped carbonaceous chondrites to investigate whether some of these meteorites could be associated with evolved comets. Methods. We compared the spectral behaviour of 2P/Encke with laboratory spectra of carbonaceous chondrites. Different specimens of the common carbonaceous chondrite groups do not match the overall features and slope of the comet 2P/Encke. By testing anomalous carbonaceous chondrites, we found two meteorites: Meteorite Hills 01017 and Grosvenor Mountains 95551, which could be good proxies for the dark materials that formed this short-period comet. We hypothesise that these two meteorites could be rare surviving samples, either from the Taurid complex or another compositionally similar body. In any case, it is difficult to get rid of the effects of terrestrial weathering in these Antarctic finds, and further studies are needed. A future sample return from the so-called dormant comets could also be useful to establish a ground truth on the materials forming evolved short-period comets. Results. As a natural outcome, we think that identifying good proxies of 2P/Encke-forming materials might have interesting implications for future sample-return missions to evolved, potentially dormant, or extinct comets. Understanding the compositional nature of evolved comets is particularly relevant in the context of the future mitigation of impact hazard from these dark and dangerous projectiles.

1999 ◽  
Vol 173 ◽  
pp. 365-370
Author(s):  
Kh.I. Ibadinov

AbstractFrom the established dependence of the brightness decrease of a short-period comet dependence on the perihelion distance of its orbit it follows that part of the surface of these cometary nuclei gradually covers by a refractory crust. The results of cometary nucleus simulation show that at constant insolation energy the crust thickness is proportional to the square root of the insolation time and the ice sublimation rate is inversely proportional to the crust thickness. From laboratory experiments resulted the thermal regime, the gas productivity of the nucleus, covering of the nucleus by the crust, and the tempo of evolution of a short-period comet into the asteroid-like body studied.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


2018 ◽  
Author(s):  
Michelle S. Thompson ◽  
◽  
Lindsay P. Keller ◽  
Mark J. Loeffler ◽  
Richard V. Morris ◽  
...  

2009 ◽  
Vol 106 (17) ◽  
pp. 6904-6909 ◽  
Author(s):  
Matthieu Gounelle ◽  
Marc Chaussidon ◽  
Alessandro Morbidelli ◽  
Jean-Alix Barrat ◽  
Cécile Engrand ◽  
...  

Micrometeorites with diameter ≈100–200 μm dominate the flux of extraterrestrial matter on Earth. The vast majority of micrometeorites are chemically, mineralogically, and isotopically related to carbonaceous chondrites, which amount to only 2.5% of meteorite falls. Here, we report the discovery of the first basaltic micrometeorite (MM40). This micrometeorite is unlike any other basalt known in the solar system as revealed by isotopic data, mineral chemistry, and trace element abundances. The discovery of a new basaltic asteroidal surface expands the solar system inventory of planetary crusts and underlines the importance of micrometeorites for sampling the asteroids' surfaces in a way complementary to meteorites, mainly because they do not suffer dynamical biases as meteorites do. The parent asteroid of MM40 has undergone extensive metamorphism, which ended no earlier than 7.9 Myr after solar system formation. Numerical simulations of dust transport dynamics suggest that MM40 might originate from one of the recently discovered basaltic asteroids that are not members of the Vesta family. The ability to retrieve such a wealth of information from this tiny (a few micrograms) sample is auspicious some years before the launch of a Mars sample return mission.


2012 ◽  
Vol 581-582 ◽  
pp. 582-585
Author(s):  
Guo Dong Zhang ◽  
Ya Dong Xiao ◽  
Nian Liu ◽  
Min Hong

The welding between Fe-Al intermetallic compound and high-strength steel was done via SPS technology. Microstructure, elements concentration and micro-hardness of welding joint were examined. The results indicated that there was no obvious welding heat-affected zone in both Fe-Al intermetallic compound and high-strength steel. The HAZ microstructures of high-strength steel were mainly martensite. In Fe-Al intermetallic compound, the grain size of heat-affected zone was larger than that of base metal and the density of heat-affected zone was lower than that of base metal. Besides, the grains of base metal had deformation phenomena. The welding joint had steady performance and the connection was reliable. Under the influence of chemical potential differences, unidirectional impulses discharge current and axial pressure, elements diffused perfectly in a short period of time.


1972 ◽  
Vol 45 ◽  
pp. 27-34
Author(s):  
K. I. Churyumov ◽  
S. I. Gerasimenko

The new short-period comet Churyumov-Gerasimenko, discovered by the authors on plates taken by the Kiev University cometary expedition to Alma-Ata in September 1969, was systematically photographed with fast telescopes at Byurakan and Alma-Ata until March 1970. Measurements were made of the photographic magnitude of the photometric nucleus, as well as of the photographic and photovisual integral magnitudes. The variations in nuclear magnitude were found to be well correlated with changes in the total sunspot area. The integral photometric parameters are Hy = 11.91±0m.54 and n=4.0±0.8 (in the photographic spectral region). Deviations of the tail axis from the prolonged radius vector were considerable. A spectrogram shows the continuum and emission of CN, C2 and C3 in the head, the continuum and a single emission (perhaps CO+) in the tail.


1994 ◽  
Vol 160 ◽  
pp. 31-44
Author(s):  
Jane Luu

The existence of a belt of comets in the outer solar system (the “Kuiper belt”) has been postulated for a variety of reasons, including the need for a source for the short-period comets. The existence of the belt seems supported by the discoveries of the trans-Neptunian objects 1992 QB1, 1993 FW, 1993 RO, 1993 RP, 1993 SB, and 1993 SC. If these objects are members of the Kuiper belt, crude lower limits on the belt population can be established from the discoveries. The Kuiper belt comets are likely to be primordial remnants of the disk from which the solar system accreted. According to the current theories of cometary nucleus evolution, these objects are expected to possess mantles (“irradiation mantles”) which are different from mantles of comets which have been heated to the point of sublimation (“rubble mantles”). Kuiper belt comets on their way to short-period comet orbits may exist among the Centaur objects.


2020 ◽  
Author(s):  
Megan Schwamb ◽  
Michele Bannister ◽  
Michael Marsset ◽  
Wesley Fraser ◽  
Rosemary Pike ◽  
...  

<p>In August 2019, 2I/Borisov, the second interstellar object and first visibly active interstellar comet, was discovered on a trajectory nearly perpendicular to the ecliptic. Observations of planet forming disks and debris disks serve as probes of the ensemble properties of extrasolar planetesimals, but the passage of an active interstellar comet through our Solar System provides a rare opportunity to individually study these small bodies up close in the same ways in which we investigate objects originating from our own Outer Solar System. Ground-based observations of short period comet <span>67P/Churyumov–Gerasimenko</span> revealed a coma dust composition indistinguishable from what was measured on its nucleus by the orbiting <em>Rosetta</em> spacecraft. Therefore when 2/I Borisov had a dust dominated tail, we attempted to study its composition with near-simultaneous griJ photometry with the Gemini North Telescope. We obtained two epochs of GMOS-N and NIRI observations in November 2019, separated by two weeks. We will report on the inferred optical-near-IR colors of 2I/I Borisov’s dust coma/tail and nucleus. We will compare our measurements to other observations of 2I/Borisov and place the interstellar comet in context with the Col-OSSOS (Colours of the Outer Solar System Survey) sample of small KBOs and interstellar object <span>ʻOumuamua</span> observed in grJ with Gemini North, using the same setup.</p>


Sign in / Sign up

Export Citation Format

Share Document