scholarly journals A charging model for the Rosetta spacecraft

2020 ◽  
Vol 642 ◽  
pp. A43
Author(s):  
F. L. Johansson ◽  
A. I. Eriksson ◽  
N. Gilet ◽  
P. Henri ◽  
G. Wattieaux ◽  
...  

Context. The electrostatic potential of a spacecraft, VS, is important for the capabilities of in situ plasma measurements. Rosetta has been found to be negatively charged during most of the comet mission and even more so in denser plasmas. Aims. Our goal is to investigate how the negative VS correlates with electron density and temperature and to understand the physics of the observed correlation. Methods. We applied full mission comparative statistics of VS, electron temperature, and electron density to establish VS dependence on cold and warm plasma density and electron temperature. We also used Spacecraft-Plasma Interaction System (SPIS) simulations and an analytical vacuum model to investigate if positively biased elements covering a fraction of the solar array surface can explain the observed correlations. Results. Here, the VS was found to depend more on electron density, particularly with regard to the cold part of the electrons, and less on electron temperature than was expected for the high flux of thermal (cometary) ionospheric electrons. This behaviour was reproduced by an analytical model which is consistent with numerical simulations. Conclusions. Rosetta is negatively driven mainly by positively biased elements on the borders of the front side of the solar panels as these can efficiently collect cold plasma electrons. Biased elements distributed elsewhere on the front side of the panels are less efficient at collecting electrons apart from locally produced electrons (photoelectrons). To avoid significant charging, future spacecraft may minimise the area of exposed bias conductors or use a positive ground power system.

2021 ◽  
Author(s):  
Fredrik Leffe Johansson ◽  
Anders Eriksson ◽  
Nicolas Gilet ◽  
Pierre Henri ◽  
Gaëtan Wattieaux ◽  
...  

<div> <div> <div> <p>Context. The electrostatic potential of a spacecraft, V<sub>S</sub>, is important for the capabilities of in situ plasma measurements. Rosetta has been found to be negatively charged during most of the comet mission and even more so in denser plasmas.<br>Aims. Our goal is to investigate how the negative V<sub>S</sub> correlates with electron density and temperature and to understand the physics of the observed correlation.</p> <p>Methods. We applied full mission comparative statistics of V<sub>S</sub>, electron temperature, and electron density to establish V<sub>S</sub> dependence on cold and warm plasma density and electron temperature. We also used Spacecraft-Plasma Interaction System (SPIS) simulations and an analytical vacuum model to investigate if positively biased elements covering a fraction of the solar array surface can explain the observed correlations.</p> <p>Results. Here, the V<sub>S</sub> was found to depend more on electron density, particularly with regard to the cold part of the electrons, and less on electron temperature than was expected for the high flux of thermal (cometary) ionospheric electrons. This behaviour was reproduced by an analytical model which is consistent with numerical simulations.<br>Conclusions. Rosetta is negatively driven mainly by positively biased elements on the borders of the front side of the solar panels as these can efficiently collect cold plasma electrons. Biased elements distributed elsewhere on the front side of the panels are less efficient at collecting electrons apart from locally produced electrons (photoelectrons). To avoid significant charging, future spacecraft may minimise the area of exposed bias conductors or use a positive ground power system.</p> </div> </div> </div>


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1221
Author(s):  
Jun-Hyoung Park ◽  
Ji-Ho Cho ◽  
Jung-Sik Yoon ◽  
Jung-Ho Song

We present a non-invasive approach for monitoring plasma parameters such as the electron temperature and density inside a radio-frequency (RF) plasma nitridation device using optical emission spectroscopy (OES) in conjunction with multivariate data analysis. Instead of relying on a theoretical model of the plasma emission to extract plasma parameters from the OES, an empirical correlation was established on the basis of simultaneous OES and other diagnostics. Additionally, we developed a machine learning (ML)-based virtual metrology model for real-time Te and ne monitoring in plasma nitridation processes using an in situ OES sensor. The results showed that the prediction accuracy of electron density was 97% and that of electron temperature was 90%. This method is especially useful in plasma processing because it provides in-situ and real-time analysis without disturbing the plasma or interfering with the process.


1972 ◽  
Vol 8 (2) ◽  
pp. 231-253 ◽  
Author(s):  
J. M. Chasseriaux ◽  
R. Debrie ◽  
C. Renard

The frequency response of the h.f. quadrupole probe is calculated to be used as a diagnostic tool for measurements of electron density and temperature. In §2 the magnetic field is assumed to be zero, and ion motions are neglected. For a Maxwellian plasma, the so-called ‘Landau wave approximation’ is compared with various more sophisticated treatments, such as numerical integration or super-Cauchy and multiple water-bag models. The range of validity of this approximation is shown to be large, and the results can be applied to the most interesting parts of the experimental observations. All results previously established are recovered with greater speed. Having studied various disturbances (collisions, inhomogeneity and relative motion of the probe with respect to the plasma), it is deduced that the best way to determine the electron temperature is to use the anti-resonances due to beating between the Landau wave and the cold plasma field. In § 3 we describe the quadrupole probe, launched in December 1971 as part of the CISASPE rocket experiment. To deduce the electron density and temperature from these measurements, it is necessary to consider the influence of a static magnetic field, such as the earth's magnetic field. The general case could be treated by numerical integration, though with great difficulty, but it is shown that in most ionospheric conditions, in the vicinity of the upper hybrid frequency ωT the above treatment is again possible, the plasma frequency simply being replaced by ωT, and the thermal velocity slightly modified. These assumptions are used to deduce the electron density and temperature profiles.


2020 ◽  
Vol 246 (2) ◽  
pp. 44 ◽  
Author(s):  
Michel Moncuquet ◽  
Nicole Meyer-Vernet ◽  
Karine Issautier ◽  
Marc Pulupa ◽  
J. W. Bonnell ◽  
...  

1989 ◽  
Vol 50 (C1) ◽  
pp. C1-559-C1-564
Author(s):  
F. P. KEENAN ◽  
R. BARNSLEY ◽  
J. DUNN ◽  
K. D. EVANS ◽  
S. M. McCANN ◽  
...  

1980 ◽  
Vol 45 (8) ◽  
pp. 2219-2223 ◽  
Author(s):  
Marie Jakoubková ◽  
Martin Čapka

Kinetics of homogenous hydrogenation of 1-heptene catalysed by rhodium(I) complexes prepared in situ from μ,μ'-dichloro-bis(cyclooctenerhodium) and phosphines of the type RP(C6H5)2 (R = -CH3, -(CH2)nSi(CH3)3; n = 1-4) have been studied. The substitution of the ligands by the trimethylsilyl group was found to increase significantly the catalytic activity of the complexes. The results are discussed in relation to the electron density on the phosphorus atom determined by 31P NMR spectroscopy and to its proton acceptor ability determined by IR spectroscopy.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2506
Author(s):  
Nguyen Hoai Ngo ◽  
Kazuhiro Shimonomura ◽  
Taeko Ando ◽  
Takayoshi Shimura ◽  
Heiji Watanabe ◽  
...  

A burst image sensor named Hanabi, meaning fireworks in Japanese, includes a branching CCD and multiple CMOS readout circuits. The sensor is backside-illuminated with a light/charge guide pipe to minimize the temporal resolution by suppressing the horizontal motion of signal carriers. On the front side, the pixel has a guide gate at the center, branching to six first-branching gates, each bifurcating to second-branching gates, and finally connected to 12 (=6×2) floating diffusions. The signals are either read out after an image capture operation to replay 12 to 48 consecutive images, or continuously transferred to a memory chip stacked on the front side of the sensor chip and converted to digital signals. A CCD burst image sensor enables a noiseless signal transfer from a photodiode to the in-situ storage even at very high frame rates. However, the pixel count conflicts with the frame count due to the large pixel size for the relatively large in-pixel CCD memory elements. A CMOS burst image sensor can use small trench-type capacitors for memory elements, instead of CCD channels. However, the transfer noise from a floating diffusion to the memory element increases in proportion to the square root of the frame rate. The Hanabi chip overcomes the compromise between these pros and cons.


Sign in / Sign up

Export Citation Format

Share Document