scholarly journals η Carinae with Fermi-LAT: two full orbits and the third periastron

2021 ◽  
Vol 654 ◽  
pp. A44
Author(s):  
G. Martí-Devesa ◽  
O. Reimer

Context. Colliding-wind binaries are massive stellar systems featuring strong, interacting winds. These binaries may be actual particle accelerators, making them variable γ-ray sources due to changes in the wind collision region along the orbit. However, only two of these massive stellar binary systems have been identified as high-energy sources. The first and archetypical system of this class is η Carinae, a bright γ-ray source with orbital variability peaking around its periastron passage. Aims. The origin of the high-energy emission in η Carinae is still unclear, with both lepto-hadronic and hadronic scenarios being under discussion. Moreover, the γ-ray emission seemed to differ between the two periastrons previously observed with the Fermi-Large Area Telescope. Continuing observations might provide highly valuable information for understanding the emission mechanisms in this system. Methods. We have used almost 12 yr of data from the Fermi-Large Area Telescope. We studied both low- and high-energy components, searching for differences and similarities between both orbits, and we made use of this large dataset to search for emission from nearby colliding-wind binaries. Results. We show how the energy component above 10 GeV of η Carinae peaks months before the 2014 periastron, while the 2020 periastron is the brightest one to date. Additionally, upper limits are provided for the high-energy emission in other particle-accelerating colliding-wind systems. Conclusions. Current γ-ray observations of η Carinae strongly suggest that the wind collision region of this system is perturbed from orbit to orbit, affecting particle transport within the shock.

2020 ◽  
Vol 494 (4) ◽  
pp. 6043-6052
Author(s):  
S del Palacio ◽  
F García ◽  
D Altamirano ◽  
R H Barbá ◽  
V Bosch-Ramon ◽  
...  

ABSTRACT We conducted an observational campaign towards one of the most massive and luminous colliding wind binaries in the Galaxy, HD 93129A, close to its periastron passage in 2018. During this time the source was predicted to be in its maximum of high-energy emission. Here we present our data analysis from the X-ray satellites Chandra and NuSTAR and the γ-ray satellite AGILE. High-energy emission coincident with HD 93129A was detected in the X-ray band up to ∼18 keV, whereas in the γ-ray band only upper limits were obtained. We interpret the derived fluxes using a non-thermal radiative model for the wind-collision region. We establish a conservative upper limit for the fraction of the wind kinetic power that is converted into relativistic electron acceleration, fNT,e < 0.02. In addition, we set a lower limit for the magnetic field in the wind-collision region as BWCR > 0.3 G. We also argue a putative interpretation of the emission from which we estimate fNT,e ≈ 0.006 and BWCR ≈ 0.5 G. We conclude that multiwavelength, dedicated observing campaigns during carefully selected epochs are a powerful tool for characterizing the relativistic particle content and magnetic field intensity in colliding wind binaries.


2012 ◽  
Vol 547 ◽  
pp. A95 ◽  
Author(s):  
F. Longo ◽  
E. Moretti ◽  
L. Nava ◽  
R. Desiante ◽  
M. Olivo ◽  
...  

2018 ◽  
Vol 27 (13) ◽  
pp. 1842003 ◽  
Author(s):  
Lara Nava

The number of gamma-ray bursts (GRBs) detected at high energies ([Formula: see text][Formula: see text]GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a better characterization of the high-energy emission properties and in stronger constraints on theoretical models. In spite of the many achievements and progresses, several observational properties still represent a challenge for theoretical models, revealing how our understanding is far from being complete. This paper reviews the main spectral and temporal properties of [Formula: see text][Formula: see text]GeV emission from GRBs and summarizes the most promising theoretical models proposed to interpret the observations. Since a boost for the understanding of GeV radiation might come from observations at even higher energies, the present status and future prospects for observations at very-high energies (above [Formula: see text][Formula: see text]100[Formula: see text]GeV) are also discussed. The improved sensitivity of upcoming facilities, coupled to theoretical predictions, supports the concrete possibility for future ground GRB detections in the high/very-high energy domain.


2018 ◽  
Vol 168 ◽  
pp. 04013
Author(s):  
Hongjun An

We present our studies of intrabinary shock emission for astrophysical binary systems with a neutron star. We construct a model for the shock emission and compare the model calculation with the light curve and the spectral energy distribution of the gamma-ray binary 1FGL J1018.6-5856. The model assumes a slow and a fast population of particles accelerated in the shock, and computes the high-energy emission spectra and orbital light curves produced by synchrotron, self-Compton and external Compton processes of the high-energy particles in the shock. The model allows one to study plasma properties and to constrain the binary geometry, most importantly the inclination angle (i). We discuss potential use of this model for other pulsar binaries to determine the inclination angle of the binary hence the mass of the neutron star.


2020 ◽  
Vol 904 (1) ◽  
pp. 67
Author(s):  
Xiongfei Geng ◽  
Wei Zeng ◽  
Bindu Rani ◽  
Richard J. Britto ◽  
Guomei Zhang ◽  
...  

2007 ◽  
Vol 667 (1) ◽  
pp. 358-366 ◽  
Author(s):  
J. Albert ◽  
E. Aliu ◽  
H. Anderhub ◽  
P. Antoranz ◽  
A. Armada ◽  
...  

2021 ◽  
Author(s):  
F. Longo ◽  
Alessio Berti ◽  
Zeljka Bosnjak ◽  
Alice Donini ◽  
Satoshi Fukami ◽  
...  

2018 ◽  
Vol 14 (S342) ◽  
pp. 61-68
Author(s):  
Monica Orienti

AbstractRelativistic jets are one of the most powerful manifestations of the release of energy produced around supermassive black holes at the centre of active galactic nuclei (AGN). Their emission is observed across the entire electromagnetic spectrum, from the radio band to gamma rays. Despite decades of efforts, many aspects of the physics of relativistic jets remain elusive. In particular, the location and the mechanisms responsible for the high-energy emission and the connection of the variability at different wavelengths are among the greatest challenges in the study of AGN. Recent high resolution radio observations of flaring objects locate the high energy emitting region downstream the jet at parsec scale distance from the central engine. Furthermore, monitoring campaigns of the most active blazars indicate that not all the high energy flares have the same characteristics in the various energy bands, even from the same source, making the interpretation of the mechanism responsible for the high-energy emission not trivial. Here I will discuss gamma-ray properties of blazars obtained by Fermi Large Area Telescope observations and the connection between radio and high-energy emission in relativistic jets, and I will focus on the importance of high angular resolution observations.


2008 ◽  
Vol 685 (1) ◽  
pp. L71-L74 ◽  
Author(s):  
E. Aliu ◽  
H. Anderhub ◽  
L. A. Antonelli ◽  
P. Antoranz ◽  
M. Backes ◽  
...  

2007 ◽  
Author(s):  
D. Bastieri ◽  
N. Galante ◽  
M. Gaug ◽  
M. Garczarczyk ◽  
F. Longo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document