scholarly journals Deep images of the Galactic center with GRAVITY

Author(s):  
◽  
J. Stadler ◽  
A. Drescher
Keyword(s):  
Author(s):  
Taras Panamarev ◽  
◽  
Aigerim Otebay ◽  
Bekdaulet Shukirgaliyev ◽  
Mukhagali Kalambay ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Chris Gordon ◽  
Harrison Ploeg ◽  
Roland Crocker ◽  
Oscar Macias

1997 ◽  
Vol 484 (2) ◽  
pp. 761-778 ◽  
Author(s):  
Ricardo Genova ◽  
John E. Beckman ◽  
Stuart Bowyer ◽  
Thomas Spicer

2009 ◽  
Vol 692 (2) ◽  
pp. 1075-1109 ◽  
Author(s):  
S. Gillessen ◽  
F. Eisenhauer ◽  
S. Trippe ◽  
T. Alexander ◽  
R. Genzel ◽  
...  

2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
H. Hernández-Arellano ◽  
M. Napsuciale ◽  
S. Rodríguez

Abstract In this work we study the possibility that the gamma ray excess (GRE) at the Milky Way galactic center come from the annihilation of dark matter with a (1, 0) ⊕ (0, 1) space-time structure (spin-one dark matter, SODM). We calculate the production of prompt photons from initial state radiation, internal bremsstrahlung, final state radiation including the emission from the decay products of the μ, τ or hadronization of quarks. Next we study the delayed photon emission from the inverse Compton scattering (ICS) of electrons (produced directly or in the prompt decay of μ, τ leptons or in the hadronization of quarks produced in the annihilation of SODM) with the cosmic microwave background or starlight. All these mechanisms yield significant contributions only for Higgs resonant exchange, i.e. for M ≈ MH /2, and the results depend on the Higgs scalar coupling to SODM, gs. The dominant mechanism at the GRE bump is the prompt photon production in the hadronization of b quarks produced in $$ \overline{D}D\to \overline{b}b $$ D ¯ D → b ¯ b , whereas the delayed photon emission from the ICS of electrons coming from the hadronization of b quarks produced in the same reaction dominates at low energies (ω < 0.3 GeV ) and prompt photons from c and τ , as well as from internal bremsstrahlung, yield competitive contributions at the end point of the spectrum (ω ≥ 30 GeV ). Taking into account all these contributions, our results for photons produced in the annihilation of SODM are in good agreement with the GRE data for gs ∈ [0.98, 1.01] × 10−3 and M ∈ [62.470, 62.505] GeV . We study the consistency of the corresponding results for the dark matter relic density, the spin-independent dark matter-nucleon cross-section σp and the cross section for the annihilation of dark matter into $$ \overline{b}b $$ b ¯ b , τ+τ−, μ+μ− and γγ, taking into account the Higgs resonance effects, finding consistent results in all cases.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1432
Author(s):  
Dmitry O. Chernyshov ◽  
Andrei E. Egorov ◽  
Vladimir A. Dogiel ◽  
Alexei V. Ivlev

Recent observations of gamma rays with the Fermi Large Area Telescope (LAT) in the direction of the inner galaxy revealed a mysterious excess of GeV. Its intensity is significantly above predictions of the standard model of cosmic rays (CRs) generation and propagation with a peak in the spectrum around a few GeV. Popular interpretations of this excess are that it is due to either spherically distributed annihilating dark matter (DM) or an abnormal population of millisecond pulsars. We suggest an alternative explanation of the excess through the CR interactions with molecular clouds in the Galactic Center (GC) region. We assumed that the excess could be imitated by the emission of molecular clouds with depleted density of CRs with energies below ∼10 GeV inside. A novelty of our work is in detailed elaboration of the depletion mechanism of CRs with the mentioned energies through the “barrier” near the cloud edge formed by the self-excited MHD turbulence. This depletion of CRs inside the clouds may be a reason for the deficit of gamma rays from the Central Molecular Zone (CMZ) at energies below a few GeV. This in turn changes the ratio between various emission components at those energies and may potentially absorb the GeV excess by a simple renormalization of key components.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Xiang Cai ◽  
Jonathan H. Jiang ◽  
Kristen A. Fahy ◽  
Yuk L. Yung

In the field of astrobiology, the precise location, prevalence, and age of potential extraterrestrial intelligence (ETI) have not been explicitly explored. Here, we address these inquiries using an empirical galactic simulation model to analyze the spatial–temporal variations and the prevalence of potential ETI within the Galaxy. This model estimates the occurrence of ETI, providing guidance on where to look for intelligent life in the Search for ETI (SETI) with a set of criteria, including well-established astrophysical properties of the Milky Way. Further, typically overlooked factors such as the process of abiogenesis, different evolutionary timescales, and potential self-annihilation are incorporated to explore the growth propensity of ETI. We examine three major parameters: (1) the likelihood rate of abiogenesis (λA); (2) evolutionary timescales (Tevo); and (3) probability of self-annihilation of complex life (Pann). We found Pann to be the most influential parameter determining the quantity and age of galactic intelligent life. Our model simulation also identified a peak location for ETI at an annular region approximately 4 kpc from the galactic center around 8 billion years (Gyrs), with complex life decreasing temporally and spatially from the peak point, asserting a high likelihood of intelligent life in the galactic inner disk. The simulated age distributions also suggest that most of the intelligent life in our galaxy are young, thus making observation or detection difficult.


Sign in / Sign up

Export Citation Format

Share Document