scholarly journals Star formation and stellar populations in the Wolf-Rayet(?) luminous compact blue galaxy IRAS 08339+6517

2006 ◽  
Vol 449 (3) ◽  
pp. 997-1017 ◽  
Author(s):  
Á. R. López-Sánchez ◽  
C. Esteban ◽  
J. García-Rojas
2008 ◽  
Vol 4 (S258) ◽  
pp. 61-72
Author(s):  
Monica Tosi

AbstractThe colour-magnitude diagrams of resolved stellar populations are the best tool to study the star formation histories of the host galactic regions. In this review the method to derive star formation histories by means of synthetic colour-magnitude diagrams is briefly outlined, and the results of its application to resolved galaxies of various morphological types are summarized. It is shown that all the galaxies studied so far were already forming stars at the lookback time reached by the observational data, independently of morphological type and metallicity. Early-type galaxies have formed stars predominantly, but in several cases not exclusively, at the earliest epochs. All the other galaxies appear to have experienced rather continuous star formation activities throughout their lifetimes, although with significant rate variations and, sometimes, short quiescent phases.


2018 ◽  
Vol 867 (2) ◽  
pp. 118 ◽  
Author(s):  
Keunho Kim ◽  
Sangeeta Malhotra ◽  
James E. Rhoads ◽  
Bhavin Joshi ◽  
Ignacio Fererras ◽  
...  

2020 ◽  
Vol 501 (1) ◽  
pp. 1046-1058
Author(s):  
Valeria Mesa ◽  
Sol Alonso ◽  
Georgina Coldwell ◽  
Diego García Lambas ◽  
J L Nilo Castellon

ABSTRACT We use SDSS-DR14 to construct a sample of galaxy systems consisting of a central object and two satellites. We adopt projected distance and radial velocity difference criteria and impose an isolation criterion to avoid membership in larger structures. We also classify the interaction between the members of each system through a visual inspection of galaxy images, finding ${\sim}80{{\ \rm per\ cent}}$ of the systems lack evidence of interactions whilst the remaining ${\sim}20{{\ \rm per\ cent}}$ involve some kind of interaction, as inferred from their observed distorted morphology. We have considered separately, samples of satellites and central galaxies, and each of these samples were tested against suitable control sets to analyse the results. We find that central galaxies showing signs of interactions present evidence of enhanced star formation activity and younger stellar populations. As a counterpart, satellite samples show these galaxies presenting older stellar populations with a lower star formation rate than the control sample. The observed trends correlate with the stellar mass content of the galaxies and with the projected distance between the members involved in the interaction. The most massive systems are less affected since they show no star formation excess, possibly due to their more evolved stage and less gas available to form new stars. Our results suggest that it is arguably a transfer of material during interactions, with satellites acting as donors to the central galaxy. As a consequence of the interactions, satellite stellar population ages rapidly and new bursts of star formation may frequently occur in the central galaxy.


2012 ◽  
Vol 8 (S295) ◽  
pp. 191-199
Author(s):  
Carlton M. Baugh

AbstractMassive galaxies with old stellar populations have been put forwards as a challenge to models in which cosmic structures grow hierarchically through gravitational instability. I will explain how the growth of massive galaxies is helped by features of hierarchical models. I give a brief outline of how the galaxy formation process is modelled in hierarchical cosmologies using semi-analytical models, and illustrate how these models can be refined as our understanding of processes such as star formation improves. I then present a brief survey of the current state of play in the modelling of massive galaxies and list some outstanding challenges.


2018 ◽  
Vol 14 (S344) ◽  
pp. 77-80
Author(s):  
Seyed Azim Hashemi ◽  
Atefeh Javadi ◽  
Jacco Th. van Loon

AbstractDetermining the star formation history (SFH) is key to understand the formation and evolution of dwarf galaxies. Recovering the SFH in resolved galaxies is mostly based on deep colour–magnitude diagrams (CMDs), which trace the signatures of multiple evolutionary stages of their stellar populations. In distant and unresolved galaxies, the integrated light of the galaxy can be decomposed, albeit made difficult by an age–metallicity degeneracy. Another solution to determine the SFH of resolved galaxies is based on evolved stars; these luminous stars are the most accessible tracers of the underlying stellar populations and can trace the entire SFH. Here we present a novel method based on long period variable (LPV) evolved asymptotic giant branch (AGB) stars and red supergiants (RSGs). We applied this method to reconstruct the SFH for IC1613, an irregular dwarf galaxy at a distance of 750 kpc. Our results provide an independent confirmation that no major episode of star formation occurred in IC1613 over the past 5 Gyr.


1991 ◽  
Vol 148 ◽  
pp. 376-377
Author(s):  
L. Staveley-Smith

The tidal interaction between the Magellanic Clouds and the Galaxy is an important factor in influencing the physical and dynamical evolution of the Clouds (e.g. the Magellanic Stream) as well as the genesis and evolution of their respective stellar populations. However, how important is the influence of the Galaxy? This is a key question since we know that relatively isolated, magellanic-type galaxies do exist (e.g. NGC 3109 and NGC 4449) and have been just as efficient at star-formation as the LMC. It is possible in fact that the star formation in the clouds is primarily stochastic in nature and is relatively insensitive to the global forces which seem to have shaped stellar formation processes in massive spiral and elliptical galaxies. Unsupported by a massive bulge or halo component, cold gas disks are inherently susceptible to radial and bar-like instabilities (Efstathiou et al. 1982) which are very efficient at creating the dynamical pressures required for rapid star-formation. With this in mind, a detailed comparison of 'field' magellanic-type galaxies with the LMC and SMC is of some importance.


2012 ◽  
Vol 8 (S295) ◽  
pp. 200-203
Author(s):  
Chiara Tonini

AbstractWe investigate the evolution of Brightest Cluster Galaxies (BCGs) from redshift z ~ 1.6 to z = 0. We upgrade the hierarchical semi-analytic model of Croton et al. (2006) with a new spectro-photometric model that produces realistic galaxy spectra, making use of the Maraston (2005) stellar populations and a new recipe for the dust extinction. We compare the model predictions of the K-band luminosity evolution and the J-K, V-I and I-K colour evolution with a series of datasets, including Collins et al. (Nature, 2009) who argued that semi-analytic models based on the Millennium simulation cannot reproduce the red colours and high luminosity of BCGs at z > 1. We show instead that the model is well in range of the observed luminosity and correctly reproduces the colour evolution of BCGs in the whole redshift range up to z ~ 1.6. We argue that the success of the semi-analytic model is in large part due to the implementation of a more sophisticated spectro-photometric model. An analysis of the model BCGs shows an increase in mass by a factor 2-3 since z ~ 1, and star formation activity down to low redshifts. While the consensus regarding BCGs is that they are passively evolving, we argue that this conclusion is affected by the degeneracy between star formation history and stellar population models used in SED-fitting, and by the inefficacy of toy-models of passive evolution to capture the complexity of real galaxies, especially those with rich merger histories like BCGs. Following this argument, we also show that in the semi-analytic model, the BCGs show a realistic mix of stellar populations, and that these stellar populations are mostly old. In addition, the age-redshift relation of the model BCGs follows that of the Universe, meaning that given their merger history and star formation history, the ageing of BCGs is always dominated by the ageing of their stellar populations. In a ΛCDM Universe, we define such evolution as ‘passive in the hierarchical sense’.


2009 ◽  
Vol 5 (S262) ◽  
pp. 153-163
Author(s):  
Ivo Labbé

AbstractHow did galaxies evolve from primordial fluctuations to the well-ordered but diverse population of disk and elliptical galaxies that we observe today? Stellar populations synthesis models have become a crucial tool in addressing this question by helping us to interpret the spectral energy distributions of present-day galaxies and their high redshift progenitors in terms of fundamental characteristics such as stellar mass and age. I will review our current knowledge on the evolution of stellar populations in early- and late type galaxies at z < 1 and the tantalizing – but incomplete – view of the stellar populations in galaxies at 1 < z < 3, during the global peak of star formation. Despite great progress, many fundamental questions remain: what processes trigger episodes of galaxy-scale star formation and what quenches them? To what degree does the star formation history of galaxies depend on the merger history, (halo) mass, or local environment? I will discuss some of the challenges posed in interpreting current data and what improved results might be expected from new observational facilities in the near- and more distant future.


Sign in / Sign up

Export Citation Format

Share Document