stellar formation
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 6)

H-INDEX

7
(FIVE YEARS 2)

Author(s):  
Glauber Carvalho Dorsch ◽  
Lucas Emanuel Antunes Porto

Abstract We present a pedagogical introduction to some key computations in gravitational waves via a side-by-side comparison with the quadrupole contribution of electromagnetic radiation. Subtleties involving gauge choices and projections over transverse modes in the tensorial theory are made clearer by direct analogy with the vectorial counterpart. The power emitted by the quadrupole moment in both theories is computed, and the similarities as well as the origins of eventual discrepancies are discussed. Finally, we analyze the stability of bound systems under radiation emission, and discuss how the strength of the interactions can be established this way. We use the results to impose an anthropic bound on Newton's constant of order G < 3×104 Gobs, which is on par with similar constraints from stellar formation.


2020 ◽  
Vol 642 ◽  
pp. A88
Author(s):  
Y. Lebreton ◽  
D. R. Reese

Context. Stellar parameters are required in a variety of contexts, ranging from the characterisation of exoplanets to Galactic archaeology. Among them, the age of stars cannot be directly measured, while the mass and radius can be measured in some particular cases (e.g. binary systems, interferometry). More generally, stellar ages, masses, and radii have to be inferred from stellar evolution models by appropriate techniques. Aims. We have designed a Python tool named SPInS. It takes a set of photometric, spectroscopic, interferometric, and/or asteroseismic observational constraints and, relying on a stellar model grid, provides the age, mass, and radius of a star, among others, as well as error bars and correlations. We make the tool available to the community via a dedicated website. Methods. SPInS uses a Bayesian approach to find the probability distribution function of stellar parameters from a set of classical constraints. At the heart of the code is a Markov chain Monte Carlo solver coupled with interpolation within a pre-computed stellar model grid. Priors can be considered, such as the initial mass function or stellar formation rate. SPInS can characterise single stars or coeval stars, such as members of binary systems or of stellar clusters. Results. We first illustrate the capabilities of SPInS by studying stars that are spread over the Hertzsprung-Russell diagram. We then validate the tool by inferring the ages and masses of stars in several catalogues and by comparing them with literature results. We show that in addition to the age and mass, SPInS can efficiently provide derived quantities, such as the radius, surface gravity, and seismic indices. We demonstrate that SPInS can age-date and characterise coeval stars that share a common age and chemical composition. Conclusions. The SPInS tool will be very helpful in preparing and interpreting the results of large-scale surveys, such as the wealth of data expected or already provided by space missions, such as Gaia, Kepler, TESS, and PLATO.


2019 ◽  
Vol 626 ◽  
pp. A17 ◽  
Author(s):  
T. Cantat-Gaudin ◽  
C. Jordi ◽  
N. J. Wright ◽  
J. J. Armstrong ◽  
A. Vallenari ◽  
...  

Context. The Vela-Puppis region is known to host the Vela OB2 association as well as several young clusters featuring OB and pre-main-sequence stars. Several spatial and kinematic subgroups have been identified in recent years. Aims. By grouping stars based on their positions and velocity, we can address the question of the dynamical history of the region and the mechanisms that drove stellar formation. The Gaia DR2 astrometry and photometry enables us to characterise the 3D spatial and 3D kinematic distribution of young stars and to estimate the ages of the identified components. Methods. We used an unsupervised classification method to group stars based on their proper motions and parallax. We studied the expansion rates of the different identified groups based on 3D velocities and on corrected tangential velocities. We used theoretical isochrones to estimate ages. Results. The young stars can be separated into seven main groups of different ages and kinematical distribution. All groups are found to be expanding, although the expansion is mostly not isotropic. Conclusions. The size of the region, the age substructure, and the anisotropic expansion rates are compatible with a prolonged period of star formation in a turbulent molecular cloud. The current kinematics of the stars cannot be explained by internal processes alone (such as gas expulsion).


2019 ◽  
Vol 624 ◽  
pp. A94 ◽  
Author(s):  
J. Maldonado ◽  
E. Villaver ◽  
C. Eiroa ◽  
G. Micela

Context. Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. Aims. To achieve a more extensive grasp on the substellar formation process, we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Methods. Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values were derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Results. Our results show that as the mass of the substellar companion increases the metallicity of the host star tends to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host star’s metallicity is found for systems with low-mass planets. We also confirm that more massive planets tend to orbit around more massive stars. Conclusions. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2–2 MJup. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.


2018 ◽  
Vol 618 ◽  
pp. A2 ◽  
Author(s):  
J. S. Clark ◽  
M. E. Lohr ◽  
L. R. Patrick ◽  
F. Najarro ◽  
H. Dong ◽  
...  

Context. Found within the central molecular zone, the Quintuplet is one of the most massive young clusters in the Galaxy. As a consequence it offers the prospect of constraining stellar formation and evolution in extreme environments. However, current observations suggest that it comprises a remarkably diverse stellar population that is difficult to reconcile with an instantaneous formation event. Aims. To better understand the nature of the cluster our aim is to improve observational constraints on the constituent stars. Methods. In order to accomplish this goal we present Hubble Space Telescope/NICMOS+WFC3 photometry and Very Large Telescope/SINFONI+KMOS spectroscopy for ∼100 and 71 cluster members, respectively. Results. Spectroscopy of the cluster members reveals the Quintuplet to be far more homogeneous than previously expected. All supergiants are classified as either O7–8 Ia or O9–B0 Ia, with only one object of earlier (O5 I–III) spectral type. These stars form a smooth morphological sequence with a cohort of seven early-B hypergiants and six luminous blue variables and WN9-11h stars, which comprise the richest population of such stars of any stellar aggregate known. In parallel, we identify a smaller population of late-O hypergiants and spectroscopically similar WN8–9ha stars. No further H-free Wolf–Rayet (WR) stars are identified, leaving an unexpectedly extreme ratio of 13:1 for WC/WN stars. A subset of the O9–B0 supergiants are unexpectedly faint, suggesting they are both less massive and older than the greater cluster population. Finally, no main sequence objects were identifiable. Conclusions. Due to uncertainties over which extinction law to apply, it was not possible to quantitatively determine a cluster age via isochrone fitting. Nevertheless, we find an impressive coincidence between the properties of cluster members preceding the H-free WR phase and the evolutionary predictions for a single, non-rotating 60 M⊙ star; in turn this implies an age of ∼3.0–3.6 Myr for the Quintuplet. Neither the late O-hypergiants nor the low luminosity supergiants are predicted by such a path; we suggest that the former either result from rapid rotators or are the products of binary driven mass-stripping, while the latter may be interlopers. The H-free WRs must evolve from stars with an initial mass in excess of 60 M⊙ but it appears difficult to reconcile their observational properties with theoretical expectations. This is important since one would expect the most massive stars within the Quintuplet to be undergoing core-collapse/SNe at this time; since the WRs represent an evolutionary phase directly preceding this event,their physical properties are crucial to understanding both this process and the nature of the resultant relativistic remnant. As such, the Quintuplet provides unique observational constraints on the evolution and death of the most massive stars forming in the local, high metallicity Universe.


2017 ◽  
Vol 13 (S334) ◽  
pp. 312-313
Author(s):  
Orlando J. Katime Santrich ◽  
Silvia Rossi ◽  
Yuri Abuchaim ◽  
Geraldo Gonçalves

AbstractOpen clusters are important objects to study the galactic structure and its dynamical behavior as well as the stellar formation and evolution. We carried out a spectroscopic analysis to derive atmospheric parameters and chemical composition for 52 giant stars within 9 galactic open clusters. We have used the high-resolution spectra from FEROS, HARPS and UVES in the ESO archive. The methodology used is based on LTE-hypothesis. Abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Ni, YII, LaII, CeII, and NdII were calculated. Although most of these clusters present spectroscopic analysis in the literature, some CNO and s-process abundances were not previously estimated or were calculated with high uncertainties. Several lines of such elements were identified and used to calculate new abundances and improve some previous one.


2017 ◽  
Vol 12 (S330) ◽  
pp. 317-320
Author(s):  
P.-E. Tremblay ◽  
N. Gentile-Fusillo ◽  
J. Cummings ◽  
S. Jordan ◽  
B. T. Gänsicke ◽  
...  

AbstractThe vast majority of stars will become white dwarfs at the end of the stellar life cycle. These remnants are precise cosmic clocks owing to their well constrained cooling rates. Gaia Data Release 2 is expected to discover hundreds of thousands of white dwarfs, which can then be observed spectroscopically with WEAVE and 4MOST. By employing spectroscopically derived atmospheric parameters combined with Gaia parallaxes, white dwarfs can constrain the stellar formation history in the early developing phases of the Milky Way, the initial mass function in the 1.5 to 8 M⊙ range, and the stellar mass loss as well as the state of planetary systems during the post main-sequence evolution.


2017 ◽  
Vol 12 (S330) ◽  
pp. 225-226
Author(s):  
F. Jiménez-Esteban ◽  
E. Solano

AbstractBinary and multiple stars have long provided an effective method of testing stellar formation and evolution theories. In particular, wide binary systems with separations > 20,000 au are particularly challenging as their physical separations are beyond the typical size of a collapsing cloud core (5,000 - 10,000 au). We present here a preliminary work in which we make use of the TGAS catalogue and Virtual Observatory tools and services (Aladin, TOPCAT, STILTS, VOSA, VizieR) to identify binary and multiple star candidate systems. The catalogue will be available from the Spanish VO portal (http://svo.cab.inta-csic.es) in the coming months.


Sign in / Sign up

Export Citation Format

Share Document