scholarly journals Multiple early Eocene carbon isotope excursions associated with environmental changes in the Dieppe-Hampshire Basin (NW Europe)

2020 ◽  
Vol 191 ◽  
pp. 33
Author(s):  
Sylvain Garel ◽  
Christian Dupuis ◽  
Florence Quesnel ◽  
Jérémy Jacob ◽  
Johan Yans ◽  
...  

The early Eocene experienced a series of short-lived global warming events, known as hyperthermals, associated with negative carbon isotope excursions (CIE). The Paleocene-Eocene Thermal Maximum (PETM or ETM-1) and Eocene Thermal Maximum 2 (ETM-2) are the two main events of this Epoch, both marked by massive sea-floor carbonate dissolution. Their timing, amplitude and impacts are rather well documented, but CIEs with lower amplitudes also associated with carbonate dissolution are still poorly studied (e.g. events E1 to H1), especially in the terrestrial realm where hiatus/disconformities and various sedimentary rates in a single succession may complicate the assignation to global isotopic events. Here we present a new high-resolution multi-proxy study on the terrestrial, lagoonal and shallow marine late Paleocene-early Eocene succession from two sites of the Cap d’Ailly area in the Dieppe-Hampshire Basin (Normandy, France). Carbon isotope data (δ13C) on bulk organic matter and higher-plant derived n-alkanes, and K-Ar ages on authigenic glauconite were determined to provide a stratigraphic framework. Palynofacies, distribution and hydrogen isotope values (δ2H) of higher-plant derived n-alkanes allowed us to unravel paleoenvironmental and paleoclimatic changes. In coastal sediments of the Cap d’Ailly area, δ13C values revealed two main negative CIEs, from base to top CIE1 and CIE2, and 3 less pronounced negative excursions older than the NP11 nannofossil biozone. While the CIE1 is clearly linked with the PETM initiation, the CIE2 could either correspond to 1) a second excursion within the PETM interval caused by strong local environmental changes or 2) a global carbon isotopic event that occurred between the PETM and ETM-2. Paleoenvironmental data indicated that both main CIEs were associated with dramatic changes such as eutrophication, algal and/or dinoflagellate blooms along with paleohydrological variations and an increase in seasonality. They revealed that the intervals immediately below these CIEs are also marked by environmental and climatic changes. Thus, this study shows either 1) a PETM marked by at least two distinct intervals of strong environmental and climatic changes or 2) at least one “minor” CIE: E1, E2, F or G, was associated with strong environmental and climatic changes similar to those that occurred during the PETM.

Geosphere ◽  
2022 ◽  
Author(s):  
Lutz Reinhardt ◽  
Werner von Gosen ◽  
Andreas Lückge ◽  
Martin Blumenberg ◽  
Jennifer M. Galloway ◽  
...  

During the late Paleocene to early Eocene, clastic fluvial sediments and coals were deposited in northern high latitudes as part of the Marga­ret Formation at Stenkul Fiord (Ellesmere Island, Nunavut, Canada). Syn-sedimentary tectonic movements of the Eurekan deformation continu­ously affected these terrestrial sediments. Different volcanic ash layers occur, and unconformities subdivide the deposits into four sedimentary units. Rare vertebrate fossils indicate an early Eocene (Graybullian) age for the upper part of the Stenkul Fiord outcrop. Here, we present carbon isotope data of bulk coal, related organic-rich mud and siltstones, a plant leaf wax-derived alkane, and additional plant remains. These data provide a complete carbon isotope record of one stratigraphic section with defined unconformity positions and in relation to other Eurekan deformation features. A previously dated ash layer MA-1 provided a U-Pb zircon age of 53.7 Ma and is used as a stratigraphic tie point, together with a discrete negative carbon isotope excursion found above MA-1 in a closely sampled coal seam. The excursion is identified as the likely expression of the I-1 hyperthermal event. Based on our isotope data that reflect the early Eocene dynamics of the carbon cycle, this tie point, and previous paleontological constraints from vertebrate fossils, the locations of the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM-2) hyperthermals and their extent along the complete section are herein identified. Within the intervals of the PETM and ETM-2 hyperthermal events, increasing amounts of clastic sediments reached the site toward the respective end of the event. This is interpreted as a response of the fluvial depositional system to an intensified hydrological system during the hyperthermal events. Our study establishes an enhanced stratigraphic framework allowing for the calcula­tion of average sedimentation rates of different intervals and considerations on the completeness of the stratigraphic record. As one of the few high-latitude outcrops of early Eocene terrestrial sediments, the Stenkul Fiord location offers further possibilities to study the effects of extreme warming events in the Paleogene.


2019 ◽  
Vol 15 (5) ◽  
pp. 1741-1755 ◽  
Author(s):  
Katharina Methner ◽  
Olaf Lenz ◽  
Walter Riegel ◽  
Volker Wilde ◽  
Andreas Mulch

Abstract. The early Paleogene is marked by multiple negative carbon isotope excursions (CIEs) that reflect massive short-term carbon cycle perturbations that coincide with significant warming during a high-pCO2 world, affecting both marine and terrestrial ecosystems. Records of such hyperthermals from the marine–terrestrial interface (e.g., estuarine swamps and mire deposits) are therefore of great interest as their present-day counterparts are highly vulnerable to future climate and sea level change. Here, we assess paleoenvironmental changes of midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast. We provide carbon isotope data of bulk organic matter (δ13CTOC), organic carbon content (%TOC), and palynological data from an extensive peat mire deposited at a midlatitudinal (ca. 41∘ N) coastal site (Schöningen, Germany). The δ13CTOC data show a carbon isotope excursion of −1.3 ‰ (mean decrease in δ13CTOC; −1.7 ‰ at the onset of CIE) coeval with a conspicuous Apectodinium acme. Due to the exceptionally large stratigraphic thickness of the CIE at Schöningen (10 m of section) we established a detailed palynological record that indicates only minor changes in paleovegetation leading into and during this event. Instead, paleovegetation changes mostly follow natural successions in response to changes along the marine–terrestrial interface. The available age constraints for the Schöningen Formation hamper a solid assignment of the detected CIE to a particular hyperthermal such as the Paleocene–Eocene Thermal Maximum (PETM) or any succeeding hyperthermal event such as the Eocene Thermal Maximum 2 (ETM2). Compared to other nearby peat mire records (Cobham, UK; Vasterival, F) it appears that wetland deposits around the Paleogene North Sea have a consistent CIE magnitude of ca. −1.3 ‰ in δ13CTOC. Moreover, the Schöningen record shares major characteristics with the Cobham Lignite PETM record, including evidence for increased fire activity prior to the CIE, minor plant species change during the hyperthermal, a reduced CIE in δ13CTOC, and drowning of the mire (marine ingressions) during much of the Schöningen CIE event. This suggests that either the Schöningen CIE reflects the PETM or that early Paleogene hyperthermals similarly affected paleoenvironmental conditions of a major segment of the paleo-North Sea coast.


2016 ◽  
Vol 12 (2) ◽  
pp. 213-240 ◽  
Author(s):  
L. Giusberti ◽  
F. Boscolo Galazzo ◽  
E. Thomas

Abstract. The Forada section (northeastern Italy) provides a continuous, expanded deep-sea record of the Paleocene–Eocene Thermal Maximum (PETM) in the central-western Tethys. We combine a new, high-resolution, benthic foraminiferal assemblage record with published calcareous plankton, mineralogical and biomarker data to document climatic and environmental changes across the PETM, highlighting the benthic foraminiferal extinction event (BEE). The onset of the PETM, occurring  ∼ 30 kyr after a precursor event, is marked by a thin, black, barren clay layer, possibly representing a brief pulse of anoxia and carbonate dissolution. The BEE occurred within the 10 cm interval including this layer. During the first 3.5 kyr of the PETM, several agglutinated recolonizing taxa show rapid species turnover, indicating a highly unstable, CaCO3-corrosive environment. Calcareous taxa reappeared after this interval, and the next  ∼9 kyr were characterized by rapid alternation of peaks in abundance of various calcareous and agglutinated recolonizers. These observations suggest that synergistic stressors, including deepwater CaCO3 corrosiveness, low oxygenation, and high environmental instability caused the extinction. Combined faunal and biomarker data (BIT index, higher plant n-alkane average chain length) and the high abundance of the mineral chlorite suggest that erosion and weathering increased strongly at the onset of the PETM, due to an overall wet climate with invigorated hydrological cycle, which led to storm flood events carrying massive sediment discharge into the Belluno Basin. This interval was followed by the core of the PETM, characterized by four precessionally paced cycles in CaCO3 %, hematite %, δ13C, abundant occurrence of opportunistic benthic foraminiferal taxa, and calcareous nannofossil and planktonic foraminiferal taxa typical of high-productivity environments, radiolarians, and lower δDn-alkanes. We interpret these cycles as reflecting alternation between an overall arid climate, characterized by strong winds and intense upwelling, and an overall humid climate, with abundant rains and high sediment delivery (including refractory organic carbon) from land. Precessionally paced marl–limestone couplets occur throughout the recovery interval of the carbon isotope excursion (CIE) and up to 10 m above it, suggesting that these wet–dry cycles persisted, though at declining intensity, after the peak PETM. Enhanced climate extremes at mid-latitudes might have been a direct response to the massive CO2 input in the ocean atmosphere system at the Paleocene–Eocene transition, and may have had a primary role in restoring the Earth system to steady state.


2015 ◽  
Vol 11 (5) ◽  
pp. 4205-4272 ◽  
Author(s):  
L. Giusberti ◽  
F. Boscolo Galazzo ◽  
E. Thomas

Abstract. The Forada section (northeastern Italy) provides a continuous, expanded deep-sea record of the Paleocene/Eocene thermal maximum (PETM) in the central-western Tethys. We combine a new, high resolution, benthic foraminiferal assemblage record with published calcareous plankton, mineralogical and biomarker data to document climatic and environmental changes across the PETM, highlighting the benthic foraminiferal extinction event (BEE). The onset of the PETM, occurring ~ 30 kyr after a precursor event, is marked by a thin, black, barren clay layer, possibly representing a brief pulse of anoxia and carbonate dissolution. The BEE occurred within the 10 cm interval including this layer. During the first 3.5 kyr of the PETM several agglutinated recolonizing taxa show rapid species turnover, indicating a highly unstable, CaCO3-corrosive environment. Calcareous taxa reappeared after this interval, and the next ~ 9 kyr were characterized by rapid alternation of peaks in abundance of various calcareous and agglutinant recolonizers. These observations suggest that synergistic stressors including deep water CaCO3-corrosiveness, low oxygenation, and high environmental instability caused the extinction. Combined faunal and biomarker data (BIT index, higher plant n-alkane average chain length) and the high abundance of the mineral chlorite suggest that erosion and weathering increased strongly at the onset of the PETM, due to an overall wet climate with invigorated hydrological cycle, which led to storm flood-events carrying massive sediment discharge into the Belluno Basin. This interval was followed by the core of the PETM, characterized by four precessionally paced cycles in CaCO3%, hematite%, δ13C, abundant occurrence of opportunistic benthic foraminiferal taxa, as well as calcareous nannofossil and planktonic foraminiferal taxa typical of high productivity environments, radiolarians, and lower δDn-alkanes. We interpret these cycles as reflecting alternation between an overall arid climate, characterized by strong winds and intense upwelling, with an overall humid climate, with abundant rains and high sediment delivery (including refractory organic carbon) from land. Precessionally paced marl-limestone couplets occur throughout the recovery interval of the CIE and up to ten meters above it, suggesting that these wet-dry cycles persisted, though at declining intensity, after the peak PETM. Enhanced climate extremes at mid-latitudes might have been a direct response to the massive CO2 input in the ocean atmosphere system at the Paleocene–Eocene transition, and may have had a primary role in restoring the Earth system to steady state.


Author(s):  
Tali L. Babila ◽  
Donald E. Penman ◽  
Bärbel Hönisch ◽  
D. Clay Kelly ◽  
Timothy J. Bralower ◽  
...  

Geologically abrupt carbon perturbations such as the Palaeocene–Eocene Thermal Maximum (PETM, approx. 56 Ma) are the closest geological points of comparison to current anthropogenic carbon emissions. Associated with the rapid carbon release during this event are profound environmental changes in the oceans including warming, deoxygenation and acidification. To evaluate the global extent of surface ocean acidification during the PETM, we present a compilation of new and published surface ocean carbonate chemistry and pH reconstructions from various palaeoceanographic settings. We use boron to calcium ratios (B/Ca) and boron isotopes (δ 11 B) in surface- and thermocline-dwelling planktonic foraminifera to reconstruct ocean carbonate chemistry and pH. Our records exhibit a B/Ca reduction of 30–40% and a δ 11 B decline of 1.0–1.2‰ coeval with the carbon isotope excursion. The tight coupling between boron proxies and carbon isotope records is consistent with the interpretation that oceanic absorption of the carbon released at the onset of the PETM resulted in widespread surface ocean acidification. The remarkable similarity among records from different ocean regions suggests that the degree of ocean carbonate change was globally near uniform. We attribute the global extent of surface ocean acidification to elevated atmospheric carbon dioxide levels during the main phase of the PETM. This article is part of a discussion meeting issue ‘Hyperthermals: rapid and extreme global warming in our geological past’.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Jussi Hovikoski ◽  
Michael B. W. Fyhn ◽  
Henrik Nøhr-Hansen ◽  
John R. Hopper ◽  
Steven Andrews ◽  
...  

AbstractThe paleoenvironmental and paleogeographic development of the Norwegian–Greenland seaway remains poorly understood, despite its importance for the oceanographic and climatic conditions of the Paleocene–Eocene greenhouse world. Here we present analyses of the sedimentological and paleontological characteristics of Paleocene–Eocene deposits (between 63 and 47 million years old) in northeast Greenland, and investigate key unconformities and volcanic facies observed through seismic reflection imaging in offshore basins. We identify Paleocene–Eocene uplift that culminated in widespread regression, volcanism, and subaerial exposure during the Ypresian. We reconstruct the paleogeography of the northeast Atlantic–Arctic region and propose that this uplift led to fragmentation of the Norwegian–Greenland seaway during this period. We suggest that the seaway became severely restricted between about 56 and 53 million years ago, effectively isolating the Arctic from the Atlantic ocean during the Paleocene–Eocene thermal maximum and the early Eocene.


2013 ◽  
Vol 32 (1) ◽  
pp. 19737 ◽  
Author(s):  
Jenö Nagy ◽  
David Jargvoll ◽  
Henning Dypvik ◽  
Malte Jochmann ◽  
Lars Riber

Sign in / Sign up

Export Citation Format

Share Document