scholarly journals Geochemical indications for the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM-2) hyperthermals in terrestrial sediments of the Canadian Arctic

Geosphere ◽  
2022 ◽  
Author(s):  
Lutz Reinhardt ◽  
Werner von Gosen ◽  
Andreas Lückge ◽  
Martin Blumenberg ◽  
Jennifer M. Galloway ◽  
...  

During the late Paleocene to early Eocene, clastic fluvial sediments and coals were deposited in northern high latitudes as part of the Marga­ret Formation at Stenkul Fiord (Ellesmere Island, Nunavut, Canada). Syn-sedimentary tectonic movements of the Eurekan deformation continu­ously affected these terrestrial sediments. Different volcanic ash layers occur, and unconformities subdivide the deposits into four sedimentary units. Rare vertebrate fossils indicate an early Eocene (Graybullian) age for the upper part of the Stenkul Fiord outcrop. Here, we present carbon isotope data of bulk coal, related organic-rich mud and siltstones, a plant leaf wax-derived alkane, and additional plant remains. These data provide a complete carbon isotope record of one stratigraphic section with defined unconformity positions and in relation to other Eurekan deformation features. A previously dated ash layer MA-1 provided a U-Pb zircon age of 53.7 Ma and is used as a stratigraphic tie point, together with a discrete negative carbon isotope excursion found above MA-1 in a closely sampled coal seam. The excursion is identified as the likely expression of the I-1 hyperthermal event. Based on our isotope data that reflect the early Eocene dynamics of the carbon cycle, this tie point, and previous paleontological constraints from vertebrate fossils, the locations of the Paleocene-Eocene Thermal Maximum (PETM) and Eocene Thermal Maximum 2 (ETM-2) hyperthermals and their extent along the complete section are herein identified. Within the intervals of the PETM and ETM-2 hyperthermal events, increasing amounts of clastic sediments reached the site toward the respective end of the event. This is interpreted as a response of the fluvial depositional system to an intensified hydrological system during the hyperthermal events. Our study establishes an enhanced stratigraphic framework allowing for the calcula­tion of average sedimentation rates of different intervals and considerations on the completeness of the stratigraphic record. As one of the few high-latitude outcrops of early Eocene terrestrial sediments, the Stenkul Fiord location offers further possibilities to study the effects of extreme warming events in the Paleogene.

2010 ◽  
Vol 55 (31) ◽  
pp. 3606-3611 ◽  
Author(s):  
Min Zhu ◽  
ZhongLi Ding ◽  
Xu Wang ◽  
ZuoLing Chen ◽  
HanChao Jiang ◽  
...  

2021 ◽  
Author(s):  
L. Reinhardt ◽  
et al.

<div>Contains figures of most depleted δ<sup>13</sup>C values of selected early Eocene hyperthermals and age of volcanic ash layer MA-1 with graphical representation of error ranges. Additionally, tables of all δ<sup>13</sup>C data, organic carbon contents, thicknesses of clastic intervals, and details of U-Pb zircon analyses are provided.<br></div>


2015 ◽  
Vol 11 (3) ◽  
pp. 1795-1820 ◽  
Author(s):  
V. Lauretano ◽  
K. Littler ◽  
M. Polling ◽  
J. C. Zachos ◽  
L. J. Lourens

Abstract. Recent studies have shown that the Early Eocene Climatic Optimum (EECO) was preceded by a series of short-lived global warming events, known as hyperthermals. Here we present high-resolution benthic stable carbon and oxygen isotope records from ODP Sites 1262 and 1263 (Walvis Ridge, SE Atlantic) between ∼54 and ∼52 million years ago, tightly constraining the character, timing, and magnitude of six prominent hyperthermal events. These events, that include Eocene Thermal Maximum (ETM) 2 and 3, are studied in relation to orbital forcing and long-term trends. Our findings reveal an almost linear relationship between δ13C and δ18O for all these hyperthermals, indicating that the eccentricity-paced co-variance between extreme perturbations in the exogenic carbon pool and deep-sea temperatures persisted during the onset of the EECO, in accord with previous observations for the Paleocene Eocene Thermal Maximum (PETM) and ETM2. The covariance of δ13C and δ18O during H2 and I2, which are the second pulses of the "paired" hyperthermal events ETM2-H2 and I1-I2, deviates with respect to the other events. This could relate to a relatively higher contribution of an isotopically heavier source of carbon, such as peat or permafrost, and/or to climate feedbacks/local changes in circulation. Finally, the δ18O records of the two sites show a systematic offset with on average 0.2‰ heavier values for the shallower Site 1263, which we link to a slightly heavier (e.g. more saline) isotope composition of the intermediate water mass reaching the northeastern flank of the Walvis Ridge compared to that of the deeper northwestern water mass at Site 1262.


2019 ◽  
Vol 15 (5) ◽  
pp. 1741-1755 ◽  
Author(s):  
Katharina Methner ◽  
Olaf Lenz ◽  
Walter Riegel ◽  
Volker Wilde ◽  
Andreas Mulch

Abstract. The early Paleogene is marked by multiple negative carbon isotope excursions (CIEs) that reflect massive short-term carbon cycle perturbations that coincide with significant warming during a high-pCO2 world, affecting both marine and terrestrial ecosystems. Records of such hyperthermals from the marine–terrestrial interface (e.g., estuarine swamps and mire deposits) are therefore of great interest as their present-day counterparts are highly vulnerable to future climate and sea level change. Here, we assess paleoenvironmental changes of midlatitudinal late Paleocene–early Eocene peat mire records along the paleo-North Sea coast. We provide carbon isotope data of bulk organic matter (δ13CTOC), organic carbon content (%TOC), and palynological data from an extensive peat mire deposited at a midlatitudinal (ca. 41∘ N) coastal site (Schöningen, Germany). The δ13CTOC data show a carbon isotope excursion of −1.3 ‰ (mean decrease in δ13CTOC; −1.7 ‰ at the onset of CIE) coeval with a conspicuous Apectodinium acme. Due to the exceptionally large stratigraphic thickness of the CIE at Schöningen (10 m of section) we established a detailed palynological record that indicates only minor changes in paleovegetation leading into and during this event. Instead, paleovegetation changes mostly follow natural successions in response to changes along the marine–terrestrial interface. The available age constraints for the Schöningen Formation hamper a solid assignment of the detected CIE to a particular hyperthermal such as the Paleocene–Eocene Thermal Maximum (PETM) or any succeeding hyperthermal event such as the Eocene Thermal Maximum 2 (ETM2). Compared to other nearby peat mire records (Cobham, UK; Vasterival, F) it appears that wetland deposits around the Paleogene North Sea have a consistent CIE magnitude of ca. −1.3 ‰ in δ13CTOC. Moreover, the Schöningen record shares major characteristics with the Cobham Lignite PETM record, including evidence for increased fire activity prior to the CIE, minor plant species change during the hyperthermal, a reduced CIE in δ13CTOC, and drowning of the mire (marine ingressions) during much of the Schöningen CIE event. This suggests that either the Schöningen CIE reflects the PETM or that early Paleogene hyperthermals similarly affected paleoenvironmental conditions of a major segment of the paleo-North Sea coast.


2020 ◽  
Author(s):  
Maxime Tremblin ◽  
Hassan Khozyem ◽  
Jorge E. Spangenberg ◽  
Charlotte Fillon ◽  
Eric Lasseur ◽  
...  

&lt;p&gt;The Palaeogene represents the last &amp;#8220;greenhouse&amp;#8221; period characterized by high atmospheric CO&lt;sub&gt;2&lt;/sub&gt; concentrations and warm surface temperatures. This long-term climatic state was punctuated by several transient hyperthermal events. These events are recorded primarily by prominent negative carbon isotope excursions (NCIE) in both carbonates and organic matter of sedimentary successions. The largest hyperthermal of the Palaeogene, the Palaeocene-Eocene Thermal Maximum (PETM), is associated with a 5-8&amp;#176; rise in global temperature, ocean acidification and a global biotic perturbation. The PETM is thus often seen as a geological analogue for future greenhouse-gas-driven global warming. The source of the &lt;sup&gt;13&lt;/sup&gt;C-depleted carbon for the NCIE and whether it was released in one or numerous events however remains controversial. Numerous carbon sources have been suggested, either in concert or individually to explain the onset and the duration of the NCIE. These include magmatic as well as thermogenic release of CO&lt;sub&gt;2&lt;/sub&gt; associated with large scale magmatism. Over the last decade, mercury (Hg) found in marine and continental sedimentary succession has emerged as a potential proxy of past volcanic emissions, allowing to trace the relationship between the emplacement of Large Igneous Provinces (LIP) and periods of warming, mass extinctions, and biotic disruptions.&lt;/p&gt;&lt;p&gt;Although the PETM is widely recorded in pelagic and hemipelagic settings, its record in shallow-water and continental successions remains scarce due to frequent hiatuses and unconformities in such environments and a lack of enough biostratigraphic constraints. However, the high sedimentation rate, which may characterize shallow water settings, compared to deeper marine environments, may potentially preserve expanded NCIE successions to better understand the nature and causes of the PETM&lt;/p&gt;&lt;p&gt;In this study, we present the first synthetic high-resolution mercury and stable isotopic records of three shallow-water and continental successions from highly subsident peripheral basins North (Lussagnet) and South (Serraduy and Esplugrafreda) of the Pyrenean orogen across the PETM. In those sections, our results show two important negative carbon isotope excursions in the bulk-rock carbonates. Based on biostratigraphy and similarity of shape and amplitude of the isotopic excursions with global records, the largest NCIE is interpreted as the NCIE associated with the PETM. This excursion is immediately preceded by another NCIE, second largest in amplitude in our record, and that we interpret as the Pre-Onset Excursion (POE), found in few other profiles worldwide. The occurrence of the POE suggests a first episode of &lt;sup&gt;13&lt;/sup&gt;C-depleted carbon release before the onset of the PETM. These various NCIE are associated with important mercury anomalies, even when normalized to total organic content. This suggests that pulses of magmatism, probably associated to the emplacement of the North Atlantic Igneous Province (NAIP), contributed to the onset and to the long duration of the PETM.&lt;/p&gt;&lt;p&gt;Our work confirms that hyperthermal events of the Palaeogene can be well recorded in shallow water and continental successions and can be used as powerful stratigraphic tools for these depositional environments, in addition to providing information on the climatic perturbations associated with the PETM.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This work is founded and carried out in the framework of the BRGM-TOTAL project Source-to-Sink.&lt;/p&gt;


2017 ◽  
Vol 50 (3) ◽  
pp. 231-244 ◽  
Author(s):  
Simone Galeotti ◽  
Matteo Moretti ◽  
Nadia Sabatino ◽  
Mario Sprovieri ◽  
Mattia Ceccatelli ◽  
...  

2020 ◽  
Vol 191 ◽  
pp. 33
Author(s):  
Sylvain Garel ◽  
Christian Dupuis ◽  
Florence Quesnel ◽  
Jérémy Jacob ◽  
Johan Yans ◽  
...  

The early Eocene experienced a series of short-lived global warming events, known as hyperthermals, associated with negative carbon isotope excursions (CIE). The Paleocene-Eocene Thermal Maximum (PETM or ETM-1) and Eocene Thermal Maximum 2 (ETM-2) are the two main events of this Epoch, both marked by massive sea-floor carbonate dissolution. Their timing, amplitude and impacts are rather well documented, but CIEs with lower amplitudes also associated with carbonate dissolution are still poorly studied (e.g. events E1 to H1), especially in the terrestrial realm where hiatus/disconformities and various sedimentary rates in a single succession may complicate the assignation to global isotopic events. Here we present a new high-resolution multi-proxy study on the terrestrial, lagoonal and shallow marine late Paleocene-early Eocene succession from two sites of the Cap d’Ailly area in the Dieppe-Hampshire Basin (Normandy, France). Carbon isotope data (δ13C) on bulk organic matter and higher-plant derived n-alkanes, and K-Ar ages on authigenic glauconite were determined to provide a stratigraphic framework. Palynofacies, distribution and hydrogen isotope values (δ2H) of higher-plant derived n-alkanes allowed us to unravel paleoenvironmental and paleoclimatic changes. In coastal sediments of the Cap d’Ailly area, δ13C values revealed two main negative CIEs, from base to top CIE1 and CIE2, and 3 less pronounced negative excursions older than the NP11 nannofossil biozone. While the CIE1 is clearly linked with the PETM initiation, the CIE2 could either correspond to 1) a second excursion within the PETM interval caused by strong local environmental changes or 2) a global carbon isotopic event that occurred between the PETM and ETM-2. Paleoenvironmental data indicated that both main CIEs were associated with dramatic changes such as eutrophication, algal and/or dinoflagellate blooms along with paleohydrological variations and an increase in seasonality. They revealed that the intervals immediately below these CIEs are also marked by environmental and climatic changes. Thus, this study shows either 1) a PETM marked by at least two distinct intervals of strong environmental and climatic changes or 2) at least one “minor” CIE: E1, E2, F or G, was associated with strong environmental and climatic changes similar to those that occurred during the PETM.


Sign in / Sign up

Export Citation Format

Share Document