scholarly journals The use of methods of structural optimization at the stage of designing high-rise buildings with steel construction

2018 ◽  
Vol 33 ◽  
pp. 03078
Author(s):  
Andrey Vasilkin

The more designing solutions at the search stage for design for high-rise buildings can be synthesized by the engineer, the more likely that the final adopted version will be the most efficient and economical. However, in modern market conditions, taking into account the complexity and responsibility of high-rise buildings the designer does not have the necessary time to develop, analyze and compare any significant number of options. To solve this problem, it is expedient to use the high potential of computer-aided designing. To implement automated search for design solutions, it is proposed to develop the computing facilities, the application of which will significantly increase the productivity of the designer and reduce the complexity of designing. Methods of structural and parametric optimization have been adopted as the basis of the computing facilities. Their efficiency in the synthesis of design solutions is shown, also the schemes, that illustrate and explain the introduction of structural optimization in the traditional design of steel frames, are constructed. To solve the problem of synthesis and comparison of design solutions for steel frames, it is proposed to develop the computing facilities that significantly reduces the complexity of search designing and based on the use of methods of structural and parametric optimization.

2018 ◽  
Vol 251 ◽  
pp. 03017 ◽  
Author(s):  
Andrey Vasilkin

For computer-aided design solutions search, a computational tool, which will substantially facilitate designer’s work, has been developed. Structural optimization method – genetic algorithm method is taken as a basis. To accelerate design solutions synthesis, computer-aided design system in the form of a developed computational tool is used. It automatically synthesizes a significant number of design solutions using formalized conditions of strength facility requirements. Then, user compares the solutions upon performance criterion and selects the best options. The article demonstrates possibility of genetic algorithm application for obtaining design solutions through the example of a structural coating plate. The advantage of this method is obviousness in solutions search, visualization of proposed structures and user’s work with the system in dialog mode.


Author(s):  
Corie L. Cobb ◽  
Alice M. Agogino

A knowledge-based computer-aided design tool for microelectromechanical systems (MEMS) design synthesis called case-based synthesis of MEMS (CaSyn-MEMS) has been developed. MEMS-based technologies have the potential to revolutionize many consumer products and to create new market opportunities in areas such as biotechnology, aerospace, and data communications. However, the commercialization of MEMS still faces many challenges due to a lack of efficient computer-aided design tools that can assist designers during the early conceptual phases of the design process. CaSyn-MEMS combines a case-based reasoning (CBR) algorithm and a MEMS case library with parametric optimization and a multi-objective genetic algorithm (MOGA) to synthesize new MEMS design topologies that meet or improve upon a designer’s specifications. CBR is an artificial intelligence methodology that uses past design solutions and adapts them to solve current problems. Having the ability to draw upon past design knowledge is advantageous to MEMS designers, allowing reuse and modification of previously successful designs to accelerate the design process. To enable knowledge reuse, a hierarchical MEMS case library has been created. A reasoning algorithm retrieves cases with solved problems similar to the current design problem. Focusing on resonators as a case study, case retrieval demonstrated an 82% success rate. Using the retrieved cases, approximate design solutions were proposed by first adapting cases with parametric optimization, resulting in a 25% reduction in design area on average while bringing designs within 2% of the frequency goal. In situations where parametric optimization was not sufficient, a more radical design adaptation was performed through the use of MOGA. CBR provided MOGA with good starting points for optimization, allowing efficient convergence to higher quantities of Pareto optimal design concepts while reducing design area by up to 43% and meeting frequency goals within 5%.


Author(s):  
Mohammed Waheed ◽  
◽  
Mahmad Naheed ◽  
Parvez Patel ◽  
Syed Mubashir Hussain ◽  
...  

In this works 3D modeling, design and safety management of high rise building using building information modeling (BIM) technology is carried out.. Initially a AutoCAD plan with all its salient features is developed following byelaws of high rise building. Then the 3D modeling and rendering of high rise building is done in the Revit architecture of the 2D plan which is imported from the AutoCAD. The analysis and design of high rise building is carried out using ETabs software. Apart from the structural design Mechanical, Electrical and Plumbing (MEP) services design is carried out using BIM technology . The layout of fire safety system is specified efficiently with use of BIM in co-ordination with MEP services. The application of BIM based design process resulted in considerable time reduction in compression with traditional design process and the holistic design of the high rise building is carried out with the compatibility of different softwares.


2008 ◽  
pp. 738-754
Author(s):  
Matteo Golfarelli ◽  
Stefano Rizzi

Though in most data warehousing applications no relevance is given to the time when events are recorded, some domains call for a different behavior. In particular, whenever late measurements of events take place, and particularly when the events registered are subject to further updates, the traditional design solutions fail in preserving accountability and query consistency. In this article, we discuss the alternative design solutions that can be adopted, in presence of late measurements, to support different types of queries that enable meaningful historical analysis. These solutions are based on the enforcement of the distinction between transaction time and valid time within the schema that represents the fact of interest. Besides, we provide a qualitative and quantitative comparison of the solutions proposed, aimed at enabling wellinformed design decisions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhendong Hu ◽  
Ju Qiu ◽  
Fa Zhang

An optimization technique called shape-linked optimization, which is different from the traditional optimization method, is introduced in this paper. The research introduces an updated wing optimization design in an effort to adapt to continuous structure changes and shapes while optimizing for a lighter weight of the structure. The changing tendencies of the thickness of wing skins and the cross-section areas of the wing beams are fitted to continuous polynomial functions, whose coefficients are designed as variables, which is a different engineering approach from the size variants of the thickness and the area in the traditional optimization. The structural strength, stiffness, and stability are constraints. Firstly, this research unearths the significance of utilizing a modernized optimization process which alters the production of the traditional 12 or over 12 segment wing design and applies new approaches and methods with less variables that contribute to expedited design cycles, decreased engineering and manufacturing expenditures, and a lighter weight aircraft with lower operating costs than the traditional design for the operators. And then, this paper exemplifies and illustrates the validity of the above claims in a detailed and systematic approach by comparing traditional and modernized optimization applications with a two-beam wing. Finally, this paper also proves that the new optimized structure parameters are easier than the size optimization to process and manufacture.


Author(s):  
Alessandro Beghini ◽  
Mark P. Sarkisian ◽  
Neville Mathias ◽  
William F. Baker

Sign in / Sign up

Export Citation Format

Share Document