scholarly journals Strength Performance of Blended Ash Based Geopolymer Mortar

2018 ◽  
Vol 34 ◽  
pp. 01016
Author(s):  
Zaidahtulakmal M. Zahib ◽  
Kartini Kamaruddin ◽  
Hamidah M. Saman

Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.

2019 ◽  
Vol 1349 ◽  
pp. 012092 ◽  
Author(s):  
N Tutur ◽  
N H Dahalan ◽  
S R Rosseli ◽  
M A Johari

2018 ◽  
Vol 15 (1) ◽  
pp. 47
Author(s):  
NURUL NAZIERAH MOHD YUSRI ◽  
KARTINI KAMARUDDIN ◽  
HAMIDAH MOHD SAMAN ◽  
NURAINI TUTUR

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste.


2020 ◽  
Vol 15 (1) ◽  
pp. 47
Author(s):  
Nurul Nazierah Mohd Yusri ◽  
Kartini Kamaruddin ◽  
Hamidah Mohd Saman ◽  
Nuraini Tutur

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste. 


2021 ◽  
Vol 2 (1) ◽  
pp. 011-020
Author(s):  
Godwin Adie Akeke

This paper presents the effects of variability in the chemical and elemental composition of Rice Husk Ash (RHA) sourced from four (4) different locations on Tensile Properties of Concrete. RHA is an agricultural waste gotten from rice mills after removal of rice paddy for food and burnt in open air or under controlled processes. RHA is found to be pozzolanic and can be used to partially replace cement to enhance the strength and quality of concrete. The different sources where RHA was gotten are; Ogoja, Abakaliki, Adani and Adikpo in Nigeria. It is discovered that the pozolanic properties of RHA varies based on their source location. Samples from Ogoja where found to have the highest pozzolanic properties followed by Abakaliki, Adani, and Adikpo, their silica content was found to be 84.55, 76.3, 70.12, 70.11, respectively. RHA was used to replace cement in concrete at 5, 10,15,20,25 and 30%. The compressive strength was determined and the values are as follows; And the compressive strength values at 28 days was found to be in the range of 37-42N/mm2 at 5%RHA, 35-39.5N/mm2 at 10%RHA, 30-34.5N/mm2 at 15%RHA, 27-29N/mm2 at 20%RHA, 22-25.6N/mm2 at 25% RHA and 21-24N/mm2 at 30% RHA compared to the controlled sample with a strength value of 42.64N/mm2. Cylindrical columns concrete of size 100mm diameter by 200mm long were moulded and stored in water for 28 days before testing for tensile splitting strength. The values determined from the split tensile test are as follows; 2.1-3.1N/mm2 at 5%RHA, 2.1-2.5N/mm2 at 10% RHA, 1.8-2.10 N/mm2 at 15% RHA, 1.2-1.7 N/mm2 at 20%RHA, 1.1-1.3 N/mm2 at 25% RHA and 0.62-0.9 N/mm2 at 30% RHA while the results of the controlled sample is 3.1 N/mm2.From the results above it can be deduced that source location influences the chemical properties of RHA strength characteristics of the Concrete with RHA as partial replacement.


2017 ◽  
Vol 9 (2) ◽  
pp. 8
Author(s):  
Samsudin Samsudin ◽  
Sugeng Dwi Hartantyo

Rice husk is the waste from the rice mill has a dominant silica content that is equal to 93% and almost the same content of silica contained in the microsilica manufactured. By its nature when mixed into the concrete mix will improve the characteristics of concrete. In this research, rice husk ash was added to the concrete mixture of Fc 'K-175 Kg / cm2 with a variation of 0%, 8%, 10%, and 12% husk ash ash taken based on the weight of cement. This research aims to determine the value of concrete compressive strength achieved from rice husk ash mixture in K-175 Kg / cm2 concrete. Concrete mortar design using ASTM method. Test specimens were made for each addition of the percentage of husk ash is as much as 3 samples, with cylinder mold size 15 cm diameter with height 30 cm. Based on Table 4:22 in the results obtained that there is a decrease in strength on each addition of ash rice husk level. It is known that the normal compressive strength of 28 days old concrete is 226,47 kg / m2 and the lowest compressive strength is in the addition of rice husk ash 12% age 28 day that is 129,41 kg / m2


2020 ◽  
Vol 6 (1) ◽  
pp. 98-113 ◽  
Author(s):  
Rawa Shakir Muwashee

This study devotes to investigate the use of Raw Sewage Sludge (RSS) and Rice Husk Ash (RHA) to obtain sustainable construction materials. This study focuses on the evaluation of using cement-based materials having RSS and RHA. The methodology of this study could be summarized by replacing water by RSS and replacement of 10 %RHA from the weight of cement. Five groups have been used with different ratios of RSS/binder; for each group with and without RHA. In addition, the sand/binder ratio has been changed for Group 2. This method includes testing the flowability, compressive strength, Total Water Absorption (TWA) and density for the mortar mixes containing these materials. The results indicate that mixes with added materials encourage the results compared to control mixes. Addition of RHA considerably decreases flowability; however it enhanced compressive strength for all groups especially for Groups 3, 4 and 5.  Moreover, the minimum values of TWA were recorded when 10% RHA was utilized as a cement replacement for both RSS and water mixes. Finally, it was found that replacing RSS by water, leads to the reduction in flowability and TWA in all mixes especially at 10% RHA; whereas the strength and density increase.


2014 ◽  
Vol 567 ◽  
pp. 545-550 ◽  
Author(s):  
Leong Sing Wong

Peat is known to be highly compressible in nature due to its extremely high content of organic matter. As such, it is never a suitable foundation soil for construction purpose. Under such condition, it is compelling to investigate the underlying binding action of suitable materials that can be sustainably applied to stabilize the soil. The primary focus of this research article is to evaluate the effectiveness of rice husk ash as partial cement replacement in peat stabilization. Rice husk ash is basically a pozzolanic material which is produced by burning rice husk from the milling of paddy. Other than rice husk ash, Portland composite cement, calcium chloride, and silica sand were used as the materials for stabilizing the peat. An experimental based program was developed to gage the pertinent aspects that influenced the strength behavior of the stabilized peat. The strength behavior of the stabilized peat was evaluated on the basis of the results from unconfined compression tests. It was found from the test results that by partially replacing 10% of the cement with rice husk ash at an initial pressure of 50 kPa, binder dosage of 300 kg m-3, silica sand dosage of 596 kg m-3 and a curing time of 28 days, the required unconfined compressive strength of 345 kPa could be exceeded. The positive result confirmed the role of rice husk ash at imparting filler and pozzolanic effects that enhanced the strength of the stabilized peat.


2018 ◽  
Vol 15 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Nurul Nazierah Mohd Yusri ◽  
Kartini Kamaruddin ◽  
Hamidah Mohd Saman ◽  
Nuraini Tutur

Sewage sludge is a by-product generated within the wastewater treatment process. Severe concern arised as the sludge are massively been dumped to the landfill and it may affect the environment. Many studies had been conducted in reusing the sewage sludge as construction material, where it is one of the optional ways to solve the issue. In this study, dried sewage sludge was incinerated with two different temperatures in order to produce sewage sludge ash (SSA), which are 800°C and 1000°C. After few processes, this SSA then reused in mortar as cement replacement with the replacement percentage of 5%, 10%, 15% and 20% by weight. The strength performance of mortar specimens was investigated after 7, 28, 60 and 90 days of curing. From the results, it is clearly showed that the compressive strength of all mortar specimens increased when the period of curing was prolonged. Moreover, almost all compressive strength of SSA mortars was higher than the control mortar. Therefore, there is potential to reuse this waste material as part of construction materials and hence, its plays an important role for future researches in minimisation of waste.


Sign in / Sign up

Export Citation Format

Share Document