scholarly journals The Sustainability of Cement Mortar with Raw Sewage Sludge and Rice Husk Ash

2020 ◽  
Vol 6 (1) ◽  
pp. 98-113 ◽  
Author(s):  
Rawa Shakir Muwashee

This study devotes to investigate the use of Raw Sewage Sludge (RSS) and Rice Husk Ash (RHA) to obtain sustainable construction materials. This study focuses on the evaluation of using cement-based materials having RSS and RHA. The methodology of this study could be summarized by replacing water by RSS and replacement of 10 %RHA from the weight of cement. Five groups have been used with different ratios of RSS/binder; for each group with and without RHA. In addition, the sand/binder ratio has been changed for Group 2. This method includes testing the flowability, compressive strength, Total Water Absorption (TWA) and density for the mortar mixes containing these materials. The results indicate that mixes with added materials encourage the results compared to control mixes. Addition of RHA considerably decreases flowability; however it enhanced compressive strength for all groups especially for Groups 3, 4 and 5.  Moreover, the minimum values of TWA were recorded when 10% RHA was utilized as a cement replacement for both RSS and water mixes. Finally, it was found that replacing RSS by water, leads to the reduction in flowability and TWA in all mixes especially at 10% RHA; whereas the strength and density increase.

2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


Author(s):  
K. O. Oriola

The evaluation of agro-industrial by-products as alternative construction materials is becoming more significant as the demand for environmentally friendly construction materials increases. In this study, the workability and compressive strength of concrete produced by combining Palm Kernel Shell (PKS) and Rice Husk Ash (RHA) was investigated. Concrete mixes using a fixed content of 15% RHA as replacement for cement and 20, 40, 60, 80 and 100% PKS as replacement for crushed granite by volume with the mix ratios of 1:1½:3, 1:2:4 and 1:3:6 were produced. The water-to-cement ratios of 0.5, 0.6 and 0.7 were used for the respective mix ratios. Concrete without PKS and RHA served as control mix. The fresh concrete workability was evaluated through slump test. The concrete hardened properties determined were the density and compressive strength. The results indicated that the workability and density of PKSC were lower than control concrete, and they decreased as the PKS content in each mix ratio was increased. The compressive strength of concrete at 90 days decreased from 27.8-13.1 N/mm2, 23.8-8.9 N/mm2and 20.6-7.6 for 1:1½:3, 1:2:4 and 1:3:6, respectively as the substitution level of PKS increased from 0-100%. However, the compressive strength of concrete increased with curing age and the gain in strength of concrete containing RHA and PKSC were higher than the control at the later age. The concrete containing 15% RHA with up to 40% PKS for 1:1½:3 and 20% PKS for 1:2:4 mix ratios satisfied the minimum strength requirements for structural lightweight aggregate concrete (SLWAC) stipulated by the relevant standards. It can be concluded that the addition of 15% RHA is effective in improving the strength properties of PKSC for eco-friendly SLWAC production..


Author(s):  
Musaib Bashir Dar

Abstract: In this developing era concrete and cement mortar are widely used by the construction industry, with this development. Large number of industrial wastes are generated and if these wastes are not properly used it will create severe problems, keeping the environment in mind, concrete engineers are trying to find some alternative materials which will not only replaces the cement content but also improves strength of concrete. As we also know that during the manufacturing of cement large amount of Co2 is released into the environment, but if we use such material that will replace the quantity of cement content therefore indirectly, we are contributing towards the prevention of our planet from global warming and other pollutions. Also, in this research work the Rice Husk Ash is used. the rice husk ash obtained from the rice processing units, by adding this product with concrete, not only replaces the cement content but also increases the strength of concrete like compressive strength etc. The Rice husk ash was incorporated with concrete with varying percentages of 2.5% ,5% ,7.5%, & 10%. the proper codal precautions were followed during the manufacture of concrete cubes of 150x150x150mm. it was concluded that the strength of concrete increased by incorporated the rice husk ash. Keywords: Concrete, RHA, Compressive strength, Industrial wastes, Cement etc


2014 ◽  
Vol 875-877 ◽  
pp. 383-387 ◽  
Author(s):  
Teuku Ferdiansyah ◽  
Hashim Abdul Razak

The purpose of this paper is to discuss the influence of mineral additives i.e. metakaolin, silica fume, rice ash and fly ash incorporating with nanocarbontubes mortar composites. The effects on compressive strength at 28 days were also discussed and presented. Cement content of 500 kg/m3, water/cement ratio of 0.6 and aggregate/cement ratio of 2.75 were adopted for the mix propotion. 1%, 3% and 5% of nanocarbontubes in mortar were combined with 15% of mineral additives. The results show that mixtures of nanocarbontubes with 15% of metakaolin produce better strength compared to normal mortar. Meanwhile with addition of fly ash and rice husk ash the strength were decreased. The electrical resistance for all mixes at 28 days were also discussed and presented. The higher percentages of nanocarbon with addition of all mineral additives resulted in lower electrical resistance properties


2015 ◽  
Vol 802 ◽  
pp. 267-271 ◽  
Author(s):  
Muhammad Munsif Ahmad ◽  
Fauziah Ahmad ◽  
Mastura Azmi ◽  
Mohd Zulham Affandi Mohd Zahid

Most of the rice husk is disposed with no further concern and this has caused waste disposal problems. Burning rice husk can cause health and environmental problem. Rice husk ash has been widely used for concrete technology application as additive in concrete mixture. However there is lack of study on the usage of raw rice husk. This paper presents the experimental on the properties of cement mortar consisting raw rice husk which focused on the porosity and density. Specimens were prepared by incorporating different percentage of rice husk with mortar. Summation of 10 mixes has been investigated to determine the compressive strength, density, porosity and water absorption. As the main purpose of the rice husk cement mortar is for drainage material, the main characteristics needed are porosity and lightweight. From the results, it is concluded that the higher percentage of rice husk used, will decreased the compressive strength and density and increased the porosity of rice husk cement mortar.


2021 ◽  
Author(s):  
Kennedy C Onyelowe ◽  
Elvis M Mbadike ◽  
Michael E Onyia ◽  
George U Alaneme ◽  
M. U. Dimonyeka ◽  
...  

Abstract Adaptive neuro-fuzzy inference system (ANFIS), which integrates both Takagi-Sugeno fuzzy logic and neural network principles and also captures their benefits in a single framework was deployed for the modelling of the mechanical strength behaviour of expansive clayey soil treated with hydrated-lime activated rice husk ash (HARHA). The compaction properties, consistency limits and the activated ash (HARHA) were the predictors while CBR and UCS were the targets in this evolutionary model. The advantages of artificial intelligence techniques deployment in geotechnical research is to deal with the complex challenges associated with effectiveness in construction materials’ utilization so as to achieve optimal assessment of geotechnical materials’ behaviour and sustainable engineering design. ANFIS model development were carried out with 35 data sets derived from the experimental responses with respect to varying proportions of HARHA treatment from 0% to 12%. 25 and 10 datasets were used for training and testing the network respectively. The California bearing ratio (CBR) and unconfined compressive strength (UCS) were the target response while the HARHA replacement ratio, compaction and consistency limits properties were the input variables of the developed model. The model evaluation results obtained using statistical tools showed mean absolute error (MAE) of 0.582 and 0.7196, root mean square error (RMSE) of 0.6198 and 0.9004, mean square error (MSE) of 0.384 and 0.811, and coefficient of determination (CoD) value of 0.9973 and 0.9992 for CBR and UCS response parameters respectively. The results obtained indicates a very good performance in terms of prediction accuracy. This shows that ANFIS provides the flexibility in achieving sustainable geotechnical materials integration in civil works.


2012 ◽  
Vol 18 (3) ◽  
pp. 310-317 ◽  
Author(s):  
Md. Nazrul Islam ◽  
Muhammad Fauzi Mohd Zain ◽  
Maslina Jamil

This paper describes the development of statistical models to predict strength and slump of rice husk ash (RHA) incorporated high-performance concrete (HPC). Sixty samples of RHA incorporated HPC mixes having compressive strength range of 42–92 MPa and slump range of 170–245 mm were prepared and tested in the laboratory. These experimental data of sixty RHA incorporated HPC mixes were used to develop two models. Six variables namely water-to-binder ratio, cement content, RHA content, fine aggregate content, coarse aggregate content and superplasticizer content were selected to develop the models and ultimately to predict strength and slump of RHA incorporated HPC. The models were developed by regression analysis. Additional five HPC mixes were prepared with the same ingredients and tested under the same testing conditions to verify the ability of the proposed models to predict the responses. The results of the prediction of the models showed good agreement with the experimental data. Thus the developed models can be used to predict slump and 28-day compressive strength of RHA incorporated HPC. The research demonstrated that strength and slump of HPC could be successfully modeled using statistical analysis.


2018 ◽  
Vol 34 ◽  
pp. 01016
Author(s):  
Zaidahtulakmal M. Zahib ◽  
Kartini Kamaruddin ◽  
Hamidah M. Saman

Geopolymer is a based on inorganic alumino-silicate binder system. Geopolymeric materials are formed using materials that containing silica and aluminium such as fly ash and rice husk ash, which activated by alkaline solution. This paper presents the study on the effect of replacement of SSA in RHA based geopolymer, types of curing and different molarity of NaOH used on the strength of Sewage Sludge Ash (SSA) and Rice Husk Ash (RHA) based geopolymer mortar incorporating with three (3) different mix proportions. Based geopolymer mortar was synthesized from treated sewage sludge and rice husk undergoing incineration process in producing ashes, activated with sodium silicate and sodium hydroxide solution by ratio of 2.5:1 and solution to ash ratio of 1:1. Molarity of 8M and 10M NaOH were used. The percentages of SSA replacement were 0%, 10% and 20% by weight. Compressive strength was conducted at age 7, 14 and 28 days to see the development of strength with two curing regimes, which are air curing and oven curing (60°C for 24 hours). From the research conducted, the ultimate compressive strength (6.28MPa) was obtained at zero replacement of SSA taken at 28 days of oven curing with 10M of NaOH. This shows that RHA, which is rich in silica content is enough to enhance the strength of geopolymer mortar especially with high molarity of NaOH.


2012 ◽  
Vol 620 ◽  
pp. 87-93 ◽  
Author(s):  
Ramadhansyah Putra Jaya ◽  
Mohd Al Amin Muhamad Nor ◽  
Zainal Arifin Ahmad ◽  
Zakaria Mohd Amin

The properties of mortar containing rice husk ash at varying temperatures were studied. Three rice husk ash samples were prepared at different temperatures and with various colors, i.e., 600°C (pink), 800°C (grey), and 1000°C (white), all were used for this study. Ordinary Portland cement (OPC), a well known universal binder, was partially replaced with rice husk ash at 10, 15, 20, and 30% by weight of binder. The water to binder ratio (W/B) of the mortar was kept constant at 0.45. The mortars were subjected to seawater or saturated Ca (OH)2 solution. The controlled and exposed mortars were characterized using X-ray diffraction, FTIR spectroscopy and compressive strength test. The results show that the amount of silica present in RHA are varied with burning temperature and colors, approximately in the range of 95 to 97%. White RHA produced higher compressive strength both in seawater and Ca (OH)2 solution. Finally, white RHA with 15% replacement was most suitable to be used as additive in OPC, and showed good potential for use in seawater applications and alkaline environment.


Sign in / Sign up

Export Citation Format

Share Document