scholarly journals Fire resistance evaluation of reinforced concrete floors with fire-retardant coating by calculation and experimental method

2018 ◽  
Vol 60 ◽  
pp. 00003 ◽  
Author(s):  
Andrii Kovalov ◽  
Yurii Otrosh ◽  
Olha Ostroverkh ◽  
Oleksandr Hrushovinchuk ◽  
Oleksandr Savchenko

With the help of a previously developed technique based on the solution of inverse and direct problems of heat conductivity, the fire resistance of a hollow-core reinforced concrete floor with “Neosprei” fire-retardant plaster coating was estimated. The thermal and physical characteristics, as well as characteristics of the fire-proof ability of “Neosprei” fire-retardant plaster coating, have been determined. The conclusion has been made on the effectiveness of this coating and on the boundaries of the fire-retardant coatings use to ensure the normed values of the fire resistance degree of hollow-core reinforced concrete floors, including in the mining industry.

2020 ◽  
Vol 1006 ◽  
pp. 87-92
Author(s):  
Andrii Kovalov ◽  
Yurii Otrosh ◽  
Oleg Semkiv ◽  
Volodymyr Konoval ◽  
Oleksandr Chernenko

In the paper, the tests have been analysed for fire-resistant quality of the hollow-core reinforced-concrete floors with fire-retardant plaster covering under standard temperature regime of the fire. Using the methodology for determining the characteristics of fire-retardant coatings ability for reinforced-concrete floors, the dependences have been obtained of the fire-retardant coating thickness from the concrete protective layer of a hollow-core reinforced-concrete floor for a fire resistance limit of 180 minutes with a temperature regime of hydrocarbon fire and a tunnel curve according to the Netherlands standards (RWS). It has been concluded about the minimum required thickness of the studied fire-retardant coating to provide the required fire resistance limit of a hollow-core reinforced-concrete floor under the indicated fire regimes.


Author(s):  
V.I. Golovanov ◽  
◽  
A.V. Pekhotikov ◽  
V.V. Pavlov ◽  
◽  
...  

Variants of progressive solutions for the use of efficient fire protection means for steel and reinforced concrete structures of the industrial buildings and structures are considered for the purpose of increasing the actual fire resistance and ensuring the requirements of fire safety norms. Distinctive features of the temperature regimes in the initial phase of a real fire from a standard fire were established when assessing the fire resistance of building structures. It is proposed to use such standardized temperature regimes of fire for assessing the fire resistance of building structures, as standard — in the industrial buildings; temperature regime of hydrocarbons combustion — for oil and gas, petrochemical enterprises, offshore stationary platforms; tunnel temperature regime — in the road and railway tunnels. Considering the operating conditions and performance of work on fire protection, the degree of aggressiveness of the environment, the structural and methodological scheme was developed for selecting passive fire protection for steel structures. Recommendations are given on limiting the use of intumescent paints for load-bearing steel structures involved in the overall stability of buildings, with the required fire resistance limit of no more than 30 minutes. To calculate the temperature over the section of the structure during its heating, the dependences of the change in the coefficients of thermal conductivity and heat capacity of fire-retardant linings under fire were obtained. Experimental studies were conducted related to the fire resistance of reinforced concrete floor slabs and slabs with an external reinforcement system based on the carbon composite material with various types of fire-retardant materials. The issue of protecting the lining blocks of road and railway tunnels from brittle (explosive) destruction of concrete in a fire is considered. It is experimentally confirmed that the addition of polypropylene fibers to the concrete mixture replaces the use of fire protection for the tunnels enclosing structures.


Author(s):  
Andrii Kovalov ◽  
◽  
Yurii Otrosh ◽  
Vitalii Tomenko ◽  
Andrii Kondratiev ◽  
...  

Purpose. Evaluation of fire resistance of fire-resistant steel structures using the developed calculation and experimental method. Methods. Finite difference method, landfill fire test method, mathematical and computer modeling of non-stationary heat exchange processes, determination of thermophysical characteristics of fire-retardant coatings based on solving direct and inverse thermal conductivity problems. Results. Geometric, physical, computer models have been developed, with the help of which the fire resistance of fire-resistant steel structures has been evaluated by the calculation-experimental method. The adequacy of the developed method for assessing the fire resistance of fire-resistant steel structures in assessing the fire resistance of fire-resistant I-beam steel column has been checked. The analysis of tests on fire resistance of fire-resistant steel columns exposed to fire at the standard temperature of the fire without the load applied to them has been carried out. A computer model of the “steel column – reactive flame retardant coating” system has been built for numerical simulation of non-stationary heating of such a system. The fire resistance of fire-resistant steel columns of I-beam section without load applied to them has been evaluated using the calculation-experimental method. Verification of results of experimental research with results of numerical modeling has been carried out. Scientific novelty. The convergence of the results of experimental data on the duration of fire exposure at the standard temperature of the fire to reach the critical temperature of steel with the results of numerical simulations has been determined. Based on the comparison of the experimental results and numerical modeling, the adequacy of the developed model to the real processes that occur when heating fire-retardant steel columns without applying a load under fire conditions at a standard fire temperature has been confirmed. The efficiency of the proposed calculation and experimental method for assessing the fire resistance of fire-resistant steel structures has been confirmed. Practical significance. It consists in the implementation of the results on objects of different purposes in assessing the fire resistance of fire-resistant steel structures by evaluating the effectiveness of fire-retardant coatings of steel building structures.


2018 ◽  
Vol 788 ◽  
pp. 36-44
Author(s):  
Liudmyla Demydchuk ◽  
Dmytro Sapozhnyk

The normative documents of Ukraine (DBN V.1.1.7 ̶ 2016) [1] establish that the limit of fire resistance of reinforced-concrete building structures is determined by the calculation method or by fire tests, and shall be at least 45 minutes. Taking into account the modern construction technologies, namely, the reduction of the section of the main building reinforced-concrete structures, it is expedient to use fire-retardant coatings to provide the necessary fire resistance limit.


2019 ◽  
Vol 123 ◽  
pp. 01022 ◽  
Author(s):  
Andrіі Kovalov ◽  
Volodymyr Konoval ◽  
Anastasiia Khmyrova ◽  
Kateryna Dudko

The statistical data of the fire and technogenic safety in Ukrainian mines have been studied. A literary analysis has been made of advanced expertise in determining the fire resistance of building structures. It has been studied the thermal state and fire resistance of hollow-core floors using the fire tests and the calculated determination of the fire resistance degree of a structure based on a two-dimensional model of thermal conductivity and convective heat transfer implemented in the ANSYS R17.1 software complex. The fire test of hollow-core floor has been analysed and the use of a computational-experimental method is proposed to determine the parameters when simulating the thermal state and the fire resistance of both protected and unprotected hollow-core floors. A technique has been developed for simulating the thermal state and the fire resistance of hollow-core floors, which can be used in assessment of the fire resistance degree of reinforced concrete building structures both in industrial construction and in the mining industry.


2011 ◽  
Vol 335-336 ◽  
pp. 1186-1189
Author(s):  
He Fan ◽  
Jun Yu Liu ◽  
Bao Kuan Ning

Fire-resistance performance experiments with static loading-fire are investigated about one carbon fiber sheet(CFS) shear strengthened and one without CFS strengthened reinforced concrete (RC) beams exposed to the ISO834 standard fire. Shear strengthened RC beams are wrapped with fire insulation material- thick painted fire retardant coatings. Relationship between measure points temperature, displacement and time are achieved. The results suggest that: the ratio of shear-span is the main factor to fire-resistance rating and failure modes of CFS shear strengthened RC beams in fire; shear-failure fire-resistance rating are increased by thickening fire insulation to shear strengthened RC beams; mid-span deflection of shear failure is approximate one half of bending failure when shear strengthened RC beams.


2021 ◽  
Vol 3 (2) ◽  
pp. 29-39
Author(s):  
A. Kovalov ◽  
◽  
Y. Otrosh ◽  
V. Tomenko ◽  
V. Slovinskyi ◽  
...  

Based on the developed geometric, physical, computer and finite element model, the fire resistance of fire-resistant steel structures was evaluated by calculation and experimental method. The adequacy of the developed computational-experimental method for assessing the fire resistance of fire-resistant steel structures in assessing the fire resistance of a fire-resistant I-beam steel column was verified. The results of tests for fire resistance of steel columns with fire-retardant coating at standard temperature of the fire without the load applied to them (temperature in the furnace, temperature in certain places on the surface of fire-retardant steel columns, the behavior of the investigated fire-retardant coating). The analysis of tests on fire resistance of fire-resistant steel columns exposed to fire at standard temperature (temperature in the furnace, temperature in places of measurement of temperature on a surface of columns, behavior of a fire-retardant covering) is carried out. A computer model of the «steel column – reactive flame retardant coating» system has been built for numerical simulation of non-stationary heating of such a system. Simulation of non-stationary heating of the system «steel column – fire-retardant coating» in the software package FRIEND with the specified parameters (geometric model, thermal effects, initial and boundary conditions, properties of system materials). The reliability of the results of numerical modeling with real experimental data on the duration of fire exposure at the standard temperature of the fire to reach the critical temperature of steel. Based on the comparison of experimental results and numerical simulations, a conclusion is made about the adequacy of the developed model to the real processes that occur when heating fire-retardant steel columns without applying a load under fire conditions at standard fire temperature. The efficiency of the proposed calculation and experimental method for assessing the fire resistance of fire-resistant steel structures has been confirmed.


2018 ◽  
Vol 44 ◽  
pp. 00035 ◽  
Author(s):  
Marina Gravit ◽  
Eliza Gumerova ◽  
Vladimir Lulikov

The article describes possibilities of computer modeling of fire resistance for structures in high-rise buildings, which include new fire-resistant plaster compositions. As an example of program complex, “Sofistik” (Germany) was chosen for the calculation of reinforced concrete structures of tier buildings. The characteristics of fire protection compounds and their regulation, which are usually used, also are shown. According to the new code “Highrise buildings and complexes. Fire safety requirements”, limits of fire resistance for walls of not less than 240 minutes. Skyscraper “Lakhta center” with a height of 462 m and limits of fire resistance of load-bearing reinforced concrete structures 180 and 240 minutes is built up in Russia. The article investigates the means of fire protection in the business center. Moreover, modern form of cladding in Mada Residences building (Dubai, UAE) is concerned to make some conclusions about future fire resistant solutions.


Sign in / Sign up

Export Citation Format

Share Document